
Jam.py Design Tips

Jam.py Team

Apr 16, 2024

CONTENTS

1 Jam.py Application Design Tips 1
1.1 Introduction . 1
1.2 How is the documentation organised . 2

2 Development Checklist 3
2.1 Development Checklist . 3

2.1.1 Built in Code Editor . 3
2.1.2 Python version . 3
2.1.3 Using Python Virtual Environments . 4
2.1.4 Using the Source Control . 4
2.1.5 Unit Testing . 5
2.1.6 Continuous Integration (CI) . 5
2.1.7 Generating Documentation . 5
2.1.8 Limited introduction to the tool . 6
2.1.9 Debugging . 6
2.1.10 Profiling . 6
2.1.11 Containers . 6

2.2 Choosing the Web Server . 7
2.2.1 Apache Web Server and mod_wsgi . 7
2.2.2 IIS Web Server . 8
2.2.3 CPanel . 8

2.3 Choosing the Database . 8
2.3.1 Database triggers . 9
2.3.2 Database views . 9
2.3.3 Database indexes . 9
2.3.4 Database sequences . 9

2.4 admin.sqlite Database . 9

3 Application Design 11
3.1 Getting Started . 11
3.2 Top 5 Questions . 11

i

3.2.1 1. What is Jam.py? . 11
3.2.2 2. Why using Jam.py? . 11
3.2.3 3. Why not to use Jam.py? . 12
3.2.4 4. Does it scale? . 12
3.2.5 5. What can I use it for? . 12

3.3 Terminology . 12
3.3.1 Catalogs (Catalogues) . 12
3.3.2 Journals . 13
3.3.3 Details . 13
3.3.4 Reports . 13
3.3.5 Virtual Tables . 14
3.3.6 Need more Groups? . 14
3.3.7 Wrapping up . 14

3.4 Journal/Detail (or Master/Child) scenario . 15
3.5 Forms, Buttons and other user interaction items . 15
3.6 Bulk updates, inserts or delete . 15
3.7 Authentication Decision . 15

3.7.1 Built in Authentication . 15
3.7.2 Non built in Authentication . 16
3.7.3 External Authentication . 16
3.7.4 LDAP (Active Directory) Authentication . 16
3.7.5 SAML or SSO Authentication . 16
3.7.6 OAuth2, OpenID or SiteMinder (CA) Authentication . 17
3.7.7 MFA or Two Factor Authentication . 17

3.8 User Registration Form . 17
3.9 Forgotten Password Method . 17
3.10 Using Python libraries . 17
3.11 Generated Images . 18

4 “How-to”guides 19
4.1 How to install Jam.py on Windows . 19

4.1.1 Install Python . 19
4.1.2 About pip . 20
4.1.3 Setting up a virtual environment . 20
4.1.4 Install Jam.py . 20
4.1.5 Common pitfalls . 21

5 How was Demo built? 23
5.1 Demo project . 23
5.2 Demo database . 24
5.3 What to expect? . 25

5.3.1 DropDown Menu(s) . 26

ii

5.3.2 Data Grid(s) . 26
5.3.3 More Data Grid(s) . 26
5.3.4 Data Grid Header/Footer . 27
5.3.5 Any questions? . 27

5.4 Ok, how do I start? . 27
5.4.1 Invoices . 28
5.4.2 Customers . 33
5.4.3 Invoice items . 35
5.4.4 How did we go? . 38
5.4.5 Click on! . 38
5.4.6 Your 1st task! . 39

5.5 A little code . 41
5.5.1 Invoices . 42
5.5.2 Error handling! . 45
5.5.3 So, how was it? . 46

5.6 More code . 46
5.6.1 Invoices Details . 46

5.7 Server code . 47
5.7.1 Invoices . 47
5.7.2 Why Server Code? . 48
5.7.3 Debugging . 49
5.7.4 And finally⋯ . 49
5.7.5 ⋯the End of Code . 50

5.8 index.html . 50
5.8.1 Templates . 50
5.8.2 Template Code . 51
5.8.3 Wrapping up . 52

5.9 Dashboard . 52
5.9.1 Dashboard template . 52
5.9.2 Dashboard Menu Item . 53
5.9.3 Dashboard Code . 54
5.9.4 Cosmetic code . 56
5.9.5 End of Dashs . 56

6 MS Access migration 57
6.1 MS Access migration . 57
6.2 Top Migration Questions . 57

6.2.1 1. Complacency . 58
6.2.2 2. VBA? . 58
6.2.3 3. Excel? . 59
6.2.4 4. Queries . 60
6.2.5 5. Primary Keys . 60

iii

6.2.6 6. Deployment . 60
6.2.7 7. Compile Error . 61
6.2.8 8. Cannot open the database . 61
6.2.9 Conclusion . 61

6.3 Where from here? . 62
6.3.1 Notes/Issues . 63
6.3.2 Terms and Conditions . 63

6.4 Now what? . 64
6.4.1 Tables . 64
6.4.2 Using UTF8 . 65
6.4.3 Field Captions . 71
6.4.4 Reserved Words . 73
6.4.5 Deleted Flag . 73
6.4.6 Primary Keys . 74
6.4.7 Foreign Keys . 75
6.4.8 Indexes . 75
6.4.9 Users table . 75

6.5 Some migrated examples . 76
6.5.1 Personal Account Ledger . 76
6.5.2 Northwind Traders . 86
6.5.3 Inventory transactions . 99

7 Acknowledgements 101
7.1 About the author . 101

7.1.1 Copyright . 101

Index 103

iv

CHAPTER

ONE

JAM.PY APPLICATION DESIGN TIPS

1.1 Introduction

Welcome to Jam.py! If you are new to Jam.py or no-code, low-code or more-code Web application development, this is
the place to find some tips about the Jam.py.

Objectives

Installing Python and Jam.py, choosing the database and the Web server and making Application Design decisions.

Audience

Web development enthusiasts or developers, with a limited or no experience with the Web development, or deployment.

Prerequisites

Some Python and JavaScript knowledge is recommended. The general knowledge about the Command Line prompt, and
typing the commands is required.

To download this document as a single PDF, please visit:

https://jampy-application-design-tips.readthedocs.io/_/downloads/en/latest/pdf/

The PDF is built instantly after every commit into the repository. Hence, some data on this site might be older than the
PDF.

1

https://jampy-application-design-tips.readthedocs.io/_/downloads/en/latest/pdf/

Jam.py Design Tips

1.2 How is the documentation organised

This Documentation follows official Jam.py documentation, keeping similar concepts and looks:

Development Checklist topic touches on some development principles. We also mention on differences between Django
and Jam.py.

Application Design topic discusses Jam.py design terminology, authentication thoughts, etc.

“How-to”guides, here you’ll find short answers to“How do I⋯.?”types of questions.

“How was Demo built?”guide, here you’ll find my take on how was Demo built.

MS Access migration to Jam.py tips.

Acknowledgements to everyone involved in producing this document or helping with Jam.py.

2 Chapter 1. Jam.py Application Design Tips

CHAPTER

TWO

DEVELOPMENT CHECKLIST

Here we discuss some Jam.py Development environment issues and Python ecosystem.

2.1 Development Checklist

This list is inspired by the classic article by Joel Spolsky entitled The Joel Test 12 Steps to Better Code.

2.1.1 Built in Code Editor

For the JS and Python code, Jam.py has a built in Ace Code Editor. The best is to familiarise with the editor shortcuts
from here: https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts

The most used shortcuts:

Windows/Linux Mac Action

Tab Tab Indent
Shift-Tab Shift-Tab Outdent
Ctrl-/ Command-/ Toggle comment
Ctrl-Shift-/ Command-Shift-/ Toggle block comment

It is absolutely possible to extend the ACE editor for AutoCompletition or Themes.

2.1.2 Python version

Since Jam.py is a JavaScript and Python Web Framework, we need Python installed on the target Operation System. Get
the latest version of Python at https://www.python.org/downloads/ or with your operating system's package manager.

Python on Windows

3

https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://ace.c9.io/
https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts
https://www.python.org/downloads/

Jam.py Design Tips

If you are just starting with Jam.py and using Windows, you may find How to install Jam.py on Windows useful.

2.1.3 Using Python Virtual Environments

Virtual environment is strongly encouraged for any Python development. When compiling Python from source, we would
normally install all binaries in some folder, so we can use different Python versions for different projects.

This is particularly true with the ApacheWeb server and mod_wsgi module, when the module is compiled against specific
Python version, and loaded as per Apache procedure.

Standard Python library is used to create a virtual environment. After creation, the new environment must be“sourced”
, and all packages installed with pip:

$ python3 -m venv project-name

$ source project-name/bin/activate

$ pip install jam.py

If installing from source, for example downloaded zip archive from Github, unzip the archive, navigate to the folder and
install with pip:

$ pip install .

We can have as many virtual environments as needed.

Note: It is advisable to have Production and Development environments.

2.1.4 Using the Source Control

Using Source Control is encouraged with Jam.py Export functionality. Since all Jam.py code is stored in the internal
database, it is possible to only Source Control the admin.sqlite database, or it’s content by exporting the tables.

However, for the static files, for example JavaScript libraries, or CSS files, the best approach would be using Export which
fetches all objects into one compressed file. It is possible to create an automated Export, for example:

Automated config backup

The Application Builder Export file will not contain the Application database content or structure. Because everything in
Jam.py is developed inside the Application Builder, it is not possible to create different branch for the Application only.
This is the main difference comparing to Django.

The utility to completely track the application changes, even the database structure, is here:

4 Chapter 2. Development Checklist

https://groups.google.com/g/jam-py/c/glB3nPUmiLw/m/6891Js5KAwAJ

Jam.py Design Tips

Storing jam.py Application in GitLab

2.1.5 Unit Testing

Jam.py version higher then v5 is using pytest and Chai/Mocha. It is also possible to use Selenium IDE for the browser.

Please visit posted video Jam.py Application Builder automated testing with pytest and Mocha/Chai, and Simple CRM
with jam.py and Selenium IDE in 2.45minutes!.

All necessary tools and libraries for testing should be installed in the same Python virtual environment where Jam.py
libraries are.

2.1.6 Continuous Integration (CI)

It is possible to use Continuous Integration as we would with Django.

2.1.7 Generating Documentation

Sphinx is used as an defacto Python standard. It is very simple to start with using what is already provided with Jam.py.

As a bare minimum, the below files and folders are copied from Jam.py Docs directory into a new directory to create new
Documentation:

conf.py index.txt Makefile README.md

contents.txt make.bat prepare.py set_scale.py

intro:

checklist.txt index.txt

_static:

favicon.ico jquery.js

_templates:

jamdocs

Modify all files for your preference and build the documentation. For example, the below command will build one single
html file:

$ make singlehtml

For more professional look, the latexpdf option might be used.

$ make latexpdf

2.1. Development Checklist 5

https://groups.google.com/g/jam-py/c/nsUU5DEdTWQ/m/EwJg5u99AgAJ
https://docs.pytest.org/en/latest/
https://www.chaijs.com/
https://mochajs.org/
https://www.youtube.com/watch?v=ftGkrxNEwTw
https://www.youtube.com/watch?v=Sv_IllxQ_RY&t=14s
https://www.youtube.com/watch?v=Sv_IllxQ_RY&t=14s
http://www.sphinx-doc.org/en/stable/

Jam.py Design Tips

Note: Latex libraries are quite large and the installation is on the OS level. Sphinx can be installed inside Python virtual
environment.

2.1.8 Limited introduction to the tool

Jam.py is using jam-project.py with no options to create a new project, and server.py to run the project on default port
8080, optionally providing the port number.

Django is using a few different commands, for examplemanage.py with options, or django-admin with options, etc.

Hence, there are no options to run management commands from the code in Jam.py as in Django.

After running the server.py command, everything is continued in the Web browser, e.g.:

http://127.0.0.1:8080/builder.html

2.1.9 Debugging

Since Jam.py is mostly JavaScript based, most of Debugging work is done via browser debug console. It is possible to
debug the Server side Python code with print command as usual.

2.1.10 Profiling

It is strongly suggested not to run production Applications with the server.py command only. Instead, a properWeb server
should be configured. Most of the Web server speed benefits are from compressed content sent from the Web server to
the User browser, which is particularly true for CSS and JavaScript files. In addition, Jam.py has a special static folder
where all images files and documents are remaining, and this files are served by the Web server bypassing the Apache
mod_wsgi or similar Python interface for other Web servers. Serving the static might be possible with a separate Web
server, similar to Django tactics. Jam.py has no utility as collectstatic Django command, and rsync might be used in this
scenario.

2.1.11 Containers

To use a container with Jam.py is easy. However, the decision has to be made if the Application will use Reports based on
LibreOffice (LO), since packaging complete LO might be prohibitive due to a container size. If not using LO, but plain
CSV export or other mechanisms for reporting, the container size is small and fast to build. Special consideration needs
to be made about hosting the Application database and separate Jam.py admin.sqlite and langs.sqlite internal database.

Please refer to more info in here: Use external database for admin e langs

It is also possible to run Jam.py Application as an Azure Web Application, or AWS Functions, hence server less.

6 Chapter 2. Development Checklist

https://github.com/jam-py/jam-py/issues/208

Jam.py Design Tips

Please refer to more info in here: Azure Deployment

2.2 Choosing the Web Server

Jam.py is providing a lightweight internal Web server for the Development/Testing, just like Django. This means Jam.py
is extremely portable. Application can be shipped as is, or so called click-and-run, with just jam folder from Jam.py
distribution copied into the Application folder. Of course, Python still needs to be installed locally.

2.2.1 Apache Web Server and mod_wsgi

Adapted from Django Docs

Django Docs: If you want to use Jam.py on a production site, use Apache with mod_wsgi. mod_wsgi operates in one of
two modes: embedded mode or daemon mode. In embedded mode, mod_wsgi is similar to mod_perl –it embeds Python
within Apache and loads Python code into memory when the server starts. Code stays in memory throughout the life of an
Apache process, which leads to significant performance gains over other server arrangements. In daemonmode, mod_wsgi
spawns an independent daemon process that handles requests. The daemon process can run as a different user then the
web server, possibly leading to improved security. The daemon process can be restarted without restarting the entire
Apache web server, possibly making refreshing your codebase more seamless. Consult the mod_wsgi documentation to
determine which mode is right for your setup. Make sure you have Apache installed with the mod_wsgi module activated.
Jam.py will work with any version of Apache that supports mod_wsgi.

If you can’t use mod_wsgi for some reason, fear not: Jam.py supports many other deployment options. It works very
well with nginx. Additionally, Jam.py follows the WSGI spec (PEP 3333), which allows it to run on a variety of server
platforms.

mod_wsgi is tightly coupled with Python and quite often shipped as the default Python version installed on the Operation
System. When developing Application in an Python Virtual Environment, for example on the Developer’s computer,
it is possible that Python version does not match the mod_wsgi version activated in Apache due to Python mismatch. To
solve any problems with Python differences, it is suggested to install mod_wsgi for Apache from the Virtual Environment
which matches the Development/Test environment.

Please visit Apache on Windows mailgroup thread for using Apache with Windows.

2.2. Choosing the Web Server 7

https://groups.google.com/g/jam-py/c/yBp-is_XT-I/m/OMvZBcX1AQAJ
https://docs.djangoproject.com/
https://httpd.apache.org/
https://modwsgi.readthedocs.io/en/develop/
https://nginx.org/
https://peps.python.org/pep-3333/
https://modwsgi.readthedocs.io/en/develop/
https://groups.google.com/g/jam-py/c/PqV05uyKtKE/m/WGm8YJvnCAAJ

Jam.py Design Tips

2.2.2 IIS Web Server

Using IIS Web with FastCGI is supported. Please visit JamPy deployment on Microsoft IIS for more information.

2.2.3 CPanel

Using CPanel is supported. Please visit Success with cPanel v82.0.12 and Jam.py for more information.

2.3 Choosing the Database

Similar to Django, Jam.py attempts to support as many features as possible for supported databases. However, not all
database backends are alike, and Jam.py design decisions were made on which features to support.

As contrary to Django, Jam.py has no models, classes, subclasses and attributes. Since Jam.py is exclusively using Appli-
cation Builder, there is no code to develop model to database table relationship, or table fields specified as class attributes.

Adapted from Django Docs

Django Docs: Jam.py supports many different database servers and is officially supported with PostgreSQL, MariaDB,
MySQL, MSSQL, Oracle, Firebird, SQLite and SQLite with SQLCipher.

If you are developing a small project or something you don’t plan to deploy in a production environment, SQLite is
generally the best option as it doesn’t require running a separate server. However, SQLite has many differences from
other databases, so if you are working on something substantial, it’s recommended to develop with the same database
that you plan on using in production.

In addition to a database backend, we need to make sure the Python database bindings are installed.

• If using PostgreSQL, the psycopg2 package is needed.

• If using MySQL or MariaDB, the MySQLdb for Python 2.x or mysqlclient for Python 3.x is needed, as well
as database development files.

• If using MSSQL, the pymssql is needed.

• If using Oracle, the cx_Oracle is needed.

• If using SQLCipher, sqlcipher3-binary is needed for Linux. There is a standalone DLL for Windows
available.

Using MySQL on Windows is supported, please visit MySQL deployment on Windows.

Even though Jam.py supports all databases from the above, there is no guarantee that some specific and/or propriety
database functionality is supported. Here we name a few.

8 Chapter 2. Development Checklist

https://groups.google.com/g/jam-py/c/RWj-OyCNLnQ/m/nVme6y7tCwAJ
https://groups.google.com/g/jam-py/c/tkuc-dudmTA/m/0GL6mSEJCAAJ
https://docs.djangoproject.com/
https://www.postgresql.org/
https://mariadb.org/
https://www.mysql.com/
https://www.microsoft.com/en-au/sql-server/sql-server-downloads
https://www.oracle.com/
https://firebirdsql.org/
https://www.sqlite.org/
https://github.com/sqlcipher
https://oracle.github.io/python-cx_Oracle/
https://github.com/sqlcipher
https://www.radishlogic.com/coding/python-3/installing-mysqldb-for-python-3-in-windows/

Jam.py Design Tips

2.3.1 Database triggers

Database triggers are specific to the database vendor and Jam.py does not support creation of triggers within the Appli-
cation Builder. It is absolutely possible to use triggers, however, when moving the Application into the ie. Production,
the Application Export file will not contain any information about the triggers and they need to be recreated manually.

2.3.2 Database views

The database views are specific to the vendor too, and Jam.py does not support it for now. That is, it does not support
a View creation or modification. It does support the View access though. If the View is needed, we can create an table
with the same View name and needed fields, providing the Builder Project Database option is set to“DB manual mode”
when doing it.

Same as for database triggers, the Application Export file will not contain any information about the Views.

Very similar to Database Views are Jam.py Virtual Tables. More about the Virtual Table is covered inNorthwind Traders.

2.3.3 Database indexes

Indexes creation/deletion is supported with Jam.py. The indexes information is stored in the Application Export file if
the indexes were created by Application Builder interface. Not all vendor specific index functionality is supported, ie.
Oracle function based index, etc. The Primary Key creation will result in creating an index. When working with legacy

databases, meaning the tables were Imported and not created by the Application Builder, Jam.py does not import indexes
information. Thismight lead into lost indexes if moving theApplication to different environment by Jam.py Export/Import
utility.

2.3.4 Database sequences

The database sequences are supported and Jam.py is providing an interface to use the sequence generator. Not all sequence
generators can be used as this is specific to the database vendor. The Export file does not store the sequence definition,
just the name of the sequence used.

2.4 admin.sqlite Database

The Mind Map for admin.sqlite database describes the Jam.py database engine schema. The intention was to quickly find
the information needed, as well as the code.

2.4. admin.sqlite Database 9

https://jampyapplicationbuilder.com/jam_schema/Jam.py.html

Jam.py Design Tips

10 Chapter 2. Development Checklist

CHAPTER

THREE

APPLICATION DESIGN

Here we discuss some Application Design terminology.

3.1 Getting Started

“I want to put a ding in the universe.”Steve Jobs

3.2 Top 5 Questions

Before we dive into more details, let’s answer some simple questions. For sure the below is applicable to many similar
products. However, the main difference is that some other products might be “selling”other services. It is a typical
“hook, line and sinker”scenario. And fair enough, it’s business after all. The Jam.py does not do that. The source code
is yours, and it is very well structured. A joy to dig in, and I think Steve would be pleased. Try it. Give it a go.

3.2.1 1. What is Jam.py?

• Jam.py is a Rapid Application Development framework. The word rapid should be stressed.

• Jam.py is a SPA (Single Page Application).

3.2.2 2. Why using Jam.py?

• If you are already working with the databases, then Jam.py is a no-brainier.

• The development tool is free. No need for anything more then a browser.

• Leverage the existing skill-set. With some Python and JS experience, you’ll be productive in no time.

• Simple infrastructure, especially for developers.

• Deployment complexity is greatly reduced. Jam.py itself is only a few megabytes in size.

11

https://www.codecademy.com/article/fecp-what-is-a-spa

Jam.py Design Tips

3.2.3 3. Why not to use Jam.py?

• If not using databases, then it probably doesn’t make sense to use Jam.py.

• Jam.py within a browser as all JavaScript. This means there are a limited number of html elements on a page.

3.2.4 4. Does it scale?

Yes. That is absolutely true with containers as well.

3.2.5 5. What can I use it for?

Data-centric application –anything to do with the database, for example reporting, CRUD.

Hope the above five questions sparked some interest. Nothing wrong with comparing Jam.py with for example Oracle
Apex.

3.3 Terminology

One of the first thing to understand is the Jam.py terminology: the difference between Catalogs (Catalogues), Journals
and Details Groups.

Excellent Article by Marco Fioretti @ Linux Magazine:

https://www.linux-magazine.com/Issues/2020/241/Jam.py

We will reference the above article:

Every Jam.py interface, or project, is structured as a tree of tasks that are organized in groups. You may create custom

groups if you like; however, at least for your first Jam.py projects, I strongly suggest that you stick with the default task tree,

which consists of four groups called Catalogs, Journals, Details, and Reports.

3.3.1 Catalogs (Catalogues)

Note: Catalogs are tables that store actual records, like the inventory of a store or the students of some school.

Catalogs are groups of tables that can exist on its own, as for example in popular Spreadsheets software. Normally, the
Spreadsheet is used for automated calculations. Since Jam.py is not a Spreadsheets software, all calculations for table rows
is JavaScript code developed by the User/Developer within the Application Builder Client Module for a table. When some
data is updated, deleted or added to the table, Jam.py can execute calculations or any other server task in the background
by the code developed within the Server Module. Or, any calculations needed within the browser can be executed by the
JavaScript within the Client Module.

12 Chapter 3. Application Design

https://groups.google.com/g/jam-py/c/jys302rSK_k/m/Nv_Hiwm1BwAJ
https://www.linux-magazine.com/Issues/2020/241/Jam.py

Jam.py Design Tips

Once tables are created in Catalogs, they can’t be moved to some other group that easily. There is a special
utility that does that. In a newer Jam.py version, moving the tables is enabled by default, no need for any

utility.

3.3.2 Journals

Note: Journals store information about events or transactions pertaining to the records in the Catalogs –such as invoices

or purchase orders.

Journals are groups of tables that depend on some other tables, namely Catalogs and Details tables. This are the Master

tables in database Master-Details scenario, or General Ledger tables, for example in Accounting. Journals table should
contain at least one Details table, and if it does not, it probably is a Catalogs table and not a Journals table. One Journals
table can contain as many Details tables as needed. Journals table is using Catalogs tables as a source for data lookups,
for example a Customer data like Name, Surname, if this data exist in the Catalogs Customers table.

The same calculations and location principles apply as for Catalogs.

3.3.3 Details

Note: Details store detailed information pertaining to the records in the Journals –such as invoices items details or
purchase orders items details.

Details are group of tables used only by Journals tables. This are special tables with extended functionality by the default,
since extra fields are added every time a Details table is created. The extra fields are used to identify the owner record
in the Journals tables. This enables Jam.py to find information much quicker then not using extra fields. It is possible to
use Details with no extra fields to find exactly the same information by the code. For example, when Importing tables
from some Legacy system, there would be no such extra field. The solution is to use code for some otherwise missing
functionality, which is enabled automatically if used native Jam.py Details.

The same calculations and location principles apply as above.

3.3.4 Reports

Note: Reports are based on OpenDocument templates`, more specifically Calcs ods files.

Professional look of reports is developed visually in LibreOffice (LO) Calcs. It is similar look and feel to any other
Spreadsheet software. The LO enables us to use graphics, for example as the Company Logo. It is even possible to insert
images from the database itself (with watermark, if needed).

3.3. Terminology 13

https://groups.google.com/g/jam-py/c/APG-O1z7dF0/m/J4o3PWW8AwAJ

Jam.py Design Tips

The LibreOffice must be installed on the server OS level which is hosting Jam.py. The containerised LO images

do exist on the Internet, if needed to use for the Jam.py container.

3.3.5 Virtual Tables

Virtual Tables are in-memory datasets. There is no corresponding table in the project database for Virtual Table. The
Demo application is using it for sending an email to Customers. IMO, can be used to replace the need for Database Views,
for example when used with the SELECT SQL.

More about the Virtual Table is covered in Northwind Traders.

3.3.6 Need more Groups?

Any other Group item not covered by the above can be created. For instance, on official Jam.py Demo Application,
there is an Item called Dashboard, which is a table within the Analytics Group. The Dashboard is used for exactly that,
presenting some statistics as graphs. Quite similar to any Spreadsheet software, except the JavaScript code is needed to
create those graphs. Analytics is just storing the Dashboard as a placeholder, since not related to any other Item Groups.

Note: It is possible to rename any existing Item, or delete or make them invisible when accessing the Application.

3.3.7 Wrapping up

Now that we know the Jam.py terminology, it is good to start thinking about what we want to do. We might completely
ignore the default Item Groups and make some new ones. Or, we can have only one single Group and create everything
in there. However, that would not be nicely organized, due to:

1. Item Groups are represented by the drop-down menu automatically. Hence, there might be a need for HR, Payroll,
General Ledger and Assets Groups, to name a few for a Financial System. The drop-down menu would contain
many items (tables), for each Group.

2. Item Groups are Ordered in any order. In each Group, the items are also ordered.

3. All of the above happens with no programming.

14 Chapter 3. Application Design

Jam.py Design Tips

3.4 Journal/Detail (or Master/Child) scenario

As mentioned, Details Group is used to quickly identify what the Detail (Child), is for the Journal (Master), tables.
However, there is more in that. Jam.py can automatically join two or more tables to Master as Details only if tables are
available in Details Group. Hence, if there is no Details group, with no tables in it, Jam.py can not build the Master/Child
relation automatically.

3.5 Forms, Buttons and other user interaction items

The Form is a basic type of interaction with the User. All User interaction is based on JavaScript. Which means some
knowledge of JS programming might be needed if, and only if, there is a need to extend provided Jam.py functionality
out of the box. Forms are automatically created for any table and default buttons are added. The Form look depends on
the template created in the index.html file. However, since Jam.py v5 is a SPA (Single Page Application), all Forms will
look alike, if there is only one template defined.

To add a button on some Form presenting the data, please consult the official documentation. The buttons can be disabled,
enabled, not visible at all due to User Role, or some other conditions, etc.

3.6 Bulk updates, inserts or delete

Sometimes there might be a need for bulk update, insert or delete. The best approach for this task is to use a direct SQL.
There are a few bulk insert and update examples on Northwind Traders.

3.7 Authentication Decision

There are a number of Design decisions to make, namely what is the Authentication method the Application will use,
the need for Users Registration and password reset, or forgotten password mechanism, default Language or translations,
Business Logic and what not.

3.7.1 Built in Authentication

Jam.py has a built in Authentication based on Users and Roles tables within admin.sqlite database. This method works
fine for smaller Applications or Proof of Concept (PoC). However, for larger implementation it might be needed to
extend the Users/Roles table for the Application specific requirements. There might be also a requirement to store the
two mentioned tables outside the admin.sqlite database for improved security by using some other database other then
SQLite3. To copy Users/Roles from a built in database to some other Application (e.g. from Development to Test and
Prod), export/import of SYS_USERS and SYS_ROLES tables would be needed. All Administrator accounts accessing
the Builder interface use built in database.

3.4. Journal/Detail (or Master/Child) scenario 15

Jam.py Design Tips

3.7.2 Non built in Authentication

To extend the Authentication with the Application database and Users/Roles tables is easy. Please consult the official
Jam.py Documentation how to do that. The benefits for doing it is the ability to use the database backup or export,
which will contain all information specific to the Application, in one or more backup/export files. There is no need to
export/import SYS_USERS/SYS_ROLES tables, unless there are a large number of Administrator accounts who are
accessing the Builder interface.

With non built in Authentication, the Application can, as an option, use a custom Python password hashing within the
Task/Server Module. It is also possible to develop custom password complexity, or password lifetime, which does not
exist with built in method.

3.7.3 External Authentication

3.7.4 LDAP (Active Directory) Authentication

LDAP is supported by Jam.py v5. LDAP or Active Directory Authentication is fairly straight forward, and it is possible
to use a specific LDAP (AD), branch (or AD Groups), where the Jam.py Users exist. The Application will still use built
in or non built in database for storing Users/Roles.

Note: The Python Business Logic (BL) can be developed within the Task/Server Module.

For example, if the User does not exist in the Application database, it can be created with Python BL and some Role
can be assigned for the User. Otherwise, the User accessing the Application should be created first manually in the
Application with the specific Role assigned. It is worth mentioning that LDAP or AD is using password to Authenticate
the User, and it does not contain Roles information in the LDAP tree, unless LDAP is extended to contain Roles for
Jam.py.

Please refer to more info in here: https://groups.google.com/g/jam-py/c/Q2iqvSA1zTM/m/o8HKxhvSCgAJ

Note: It is worth using SSL with all connections to LDAP or AD.

3.7.5 SAML or SSO Authentication

SAML will be supported in newer major versions other then v5. SAML depends on the DNS service and the SSL
Certificates issued for the Application name. It is a large implementation for mostly commercial environment.

Please visit Demo Application in here: https://auth.jampyapplicationbuilder.com

The default username is: jam@jam.com with the same password. JumpCloud is used as the SSO provider.

16 Chapter 3. Application Design

https://groups.google.com/g/jam-py/c/Q2iqvSA1zTM/m/o8HKxhvSCgAJ
https://auth.jampyapplicationbuilder.com
mailto:jam@jam.com

Jam.py Design Tips

To test the SAML attributes released from the provider, use https://demo.jampyapplicationbuilder.com application with
the same username and password. It should be possible to cross authenticate for this two applications.

The SAML authentication code is not publicly available at this time of writing. The code is tested with MS Azure,
Shibboleth and JumpCloud. MS Graph should also work.

3.7.6 OAuth2, OpenID or SiteMinder (CA) Authentication

Similar to SAML, it is possible to develop other Authentication mechanisms. SiteMinder is supported by Apache.

3.7.7 MFA or Two Factor Authentication

Instead of using LDAP or SAML, the Application might consume Multi Factor Authentication, with Google Authenti-
cator, FreeOTP or similar software.

Please refer to more info in here: https://groups.google.com/g/jam-py/c/Nisyemcx6Vc/m/d6m7A4WSDQAJ

3.8 User Registration Form

Instead of manually creating the Users, regardless of Authentication method, the Application might use a Registration
Form for initial User creation. the default Role might be assigned for the User by Business Logic (BL).

Please consult the official Jam.py Documentation how to create a Registration Form.

3.9 Forgotten Password Method

For the Application Authenticated Users it might be worth to provide the Forgotten Password method by email. Jam.py
already has Change Password method explained in the official documentation. However, Forgotten Password method
depends on multitude dependencies, namely sending emails from the Application, and SSL, to name a few.

Please refer to more info in here: https://groups.google.com/g/jam-py/c/SYn2R0ILy74/m/Y5YMzUsSCAAJ

3.10 Using Python libraries

The true power of Jam.py is with using Python libraries. Just like some other Python frameworks.

However, the Python code or the libraries are used within the Jam.py Server Module. And only there. With the Server

Module, the source code is logically stored in relation to each part of the application. Just like the JavaScript is within the
Client Module. Of course, Jam.py can call any external Python script as usual.

The Northwind Traders migrated application from MS Access has a lot of code to start with. Most of it for is related the
RFM Analytics and bulk insert/update.

3.8. User Registration Form 17

https://demo.jampyapplicationbuilder.com
https://groups.google.com/g/jam-py/c/Nisyemcx6Vc/m/d6m7A4WSDQAJ
https://groups.google.com/g/jam-py/c/SYn2R0ILy74/m/Y5YMzUsSCAAJ

Jam.py Design Tips

When deploying the application, the Python libraries must be installed first. Or, the application might fail to function. To
avoid this behaviour, please consult the best practises when importing the libraries.

3.11 Generated Images

As mentioned, the Jam.py application is pure JavaScript. Hence, there is a limited number of html elements on a Single
Page Application (SPA). This means we need to wrap the file system image(s), which needs displaying.

Those images are usually created by the Python procedure or similar server code and/or not uploaded to the application.
The uploaded images need no special attention, since displaying is fully supported by the framework.

For example, the Northwind Traders application has a generated image on Analytics/RFMAnalysis. The image is created
every time the user visits the RFM Analysis and wrapped into a JavaScript image for displaying purposes.

18 Chapter 3. Application Design

CHAPTER

FOUR

“HOW-TO”GUIDES

Here you’ll find short answers to“How do I⋯.?”types of questions.

TBC

4.1 How to install Jam.py on Windows

Adapted from Django Docs

The below document is adopted from Django Docs.

This document will guide you through installing Python 3.x and Jam.py on Windows. It also provides instructions for
setting up a virtual environment, which makes it easier to work on Python projects. This is meant as a beginner’s guide
for users working on Jam.py projects and does not reflect how Jam.py should be installed when developing patches for
Jam.py itself.

The steps in this guide have been tested with Windows 10. In other versions, the steps would be similar. You will need
to be familiar with using the Windows command prompt.

4.1.1 Install Python

Jam.py is a Python web framework, thus requiring Python to be installed on your machine. At the time of writing, Python
3.8 is the latest version.

To install Python on your machine go to https://www.python.org/downloads/. The website should offer you a download
button for the latest Python version. Download the executable installer and run it. Check the boxes next to “Install
launcher for all users (recommended)”then click“Install Now”.

After installation, open the command prompt and check that the Python version matches the version you installed by
executing:

19

https://docs.djangoproject.com/
https://www.python.org/downloads/

Jam.py Design Tips

...\> py --version

4.1.2 About pip

pip is a package manager for Python and is included by default with the Python installer. It helps to install and uninstall
Python packages (such as Jam.py!). For the rest of the installation, we’ll use pip to install Python packages from the
command line.

4.1.3 Setting up a virtual environment

It is best practice to provide a dedicated environment for each Jam.py project you create. There are many options to
manage environments and packages within the Python ecosystem, some of which are recommended in the Python docu-
mentation.

To create a virtual environment for your project, open a new command prompt, navigate to the folder where you want to
create your project and then enter the following:

...\> py -m venv project-name

This will create a folder called‘project-name’if it does not already exist and set up the virtual environment. To activate
the environment, run:

...\> project-name\Scripts\activate.bat

The virtual environment will be activated and you’ll see“(project-name)”next to the command prompt to designate
that. Each time you start a new command prompt, you’ll need to activate the environment again.

4.1.4 Install Jam.py

Jam.py can be installed easily using pip within your virtual environment.

In the command prompt, ensure your virtual environment is active, and execute the following command:

...\> py -m pip install jam.py

This will download and install the latest Jam.py release.

After the installation has completed, you can verify your Jam.py installation by executing pip list in the command
prompt.

20 Chapter 4. “How-to”guides

https://pypi.org/project/pip/
https://packaging.python.org/guides/tool-recommendations/
https://packaging.python.org/guides/tool-recommendations/

Jam.py Design Tips

4.1.5 Common pitfalls

• If you are connecting to the internet behind a proxy, there might be problems in running the command py -m

pip install Jam.py. Set the environment variables for proxy configuration in the command prompt as
follows:

...\> set http_proxy=http://username:password@proxyserver:proxyport

...\> set https_proxy=https://username:password@proxyserver:proxyport

• If your Administrator prohibited setting up a virtual environment, it is still possible to install Jam.py as follows:

...\> python -m pip install jam.py

This will download and install the latest Jam.py release.

After the installation has completed, you can verify your Jam.py installation by executing pip list in the
command prompt.

However, running jam-project.py will fail since it is not in the path. Check the installation folder:

...\> python -m site --user-site

The output might be similar to below:

C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_

↪→qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages

Replace site-packages at the end of above line with Scripts:

...\> dir C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.

↪→Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts

The output might be similar to below:

...\> Directory of C:\Users\yourser\AppData\Local\Packages\

↪→PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\

↪→Python39\Scripts

13/04/2023 02:59 PM <DIR> .

13/04/2023 02:59 PM <DIR> ..

13/04/2023 02:59 PM 1,087 jam-project.py

1 File(s) 1,087 bytes

2 Dir(s) 177,027,321,856 bytes free

Create the new folder somewhere and run jam-project from from it:

4.1. How to install Jam.py on Windows 21

Jam.py Design Tips

...\> python C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.

↪→Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts\jam-project.

↪→py

Run the new project:

...\> python server.py

22 Chapter 4. “How-to”guides

CHAPTER

FIVE

HOW WAS DEMO BUILT?

So without reading the Doc’s (pun intended), jump on some Application building. From the official Jam.py Documen-
tation, here is the Demo project:

5.1 Demo project

After downloading the Jam.py package, and starting Demo, the application is accessible with typing 127.0.0.1:8080/in-
dex.html or just 127.0.0.1:8080 in the Browser:

The Application Builder is accessible with typing 127.0.0.1:8080/builder.html in the Browser:

23

Jam.py Design Tips

The application is derived from the open-source Chinook database. It is an invoicing example with music tracks as
invoiced products, customers, albums, etc. Basically, the application creates customer details, product details, and raises
invoices for customers. That’s it. Cool little application, though.

As mentioned, the demo application is derived from it. It is not a one-to-one mapping of all database fields and relations.
We need to start somewhere, right?

5.2 Demo database

To better understand the actual database, here is the original Chinook relational database diagram:

24 Chapter 5. How was Demo built?

Jam.py Design Tips

Why is the above diagram important? Because it is demonstrating the table’s Primary and Foreign Keys, which are
essentially table Lookup fields used within Jam.py. More about that later.

So now that we know what the Demo application is all about, we can dive into more details. First, what can we actually
expect from Jam.py?

5.3 What to expect?

Low code is what everyone talks about. Below is what Jam.py provides with no coding needed at all, at least not for this
Demo. The code does exist; it is there. Otherwise, the application would not work at all. However, this only means that
no coding is required by us to build similar applications. Because the code is there and available to us, this also means we
can adapt the existing code for our requirements. Mostly, it is a copy/paste from this Demo, with some minor changes
for the application we are building. This is important to understand. Jam.py provides many bells and whistles or so-called
batteries out of the box. However, Jam.py is not an “Out of the Box Application”! It is a framework, so we build
applications within the constraints of the framework.

Just like Django’s MVC. When building applications with Django, we operate within similar constraints. Both frame-
works are flexible enough for the job at hand. The main difference is the task or the application. Django could build the
Jam.py application, but it would be overkill, since Jam.py is way more specialized in doing so. Jam.py is a specialized
framework. It is the right tool for the right job. Let’s see what we can expect from it.

5.3. What to expect? 25

Jam.py Design Tips

5.3.1 DropDown Menu(s)

On the below menu all options on the left are created automatically. The“About”and“Jam.py”on the right side is a
code. We can build complete menu manually, not to worry. Will get there soon.

5.3.2 Data Grid(s)

The Demo Invoices data grid is called a Journal. In Accounting, these are General Ledger tables. In databases, this is a
Master Table. This grid is presented automatically with pagination at the bottom and can contain a History button, refresh
button, and Filters button. These are the default options and can be turned on/off. If a non-default button is needed, it
can be added with code, though.

Did I mention the search for any field and sorting for any field? It’s automated.

What is also done by Jam.py with no code is a summary for any numerical field or the number of records for other fields.

As seen, the Invoices data grid is presented as a tab. As we open more grids, more tabs will appear here automatically.
Tab captions can be changed with code. What we see initially is the no-code default.

5.3.3 More Data Grid(s)

The Demo Invoices data has a Details grid. These are the Invoice items details. They are created automatically and can
contain summary fields and sorting. The“Total”field visible is a code! What is not visible is editing directly in the grid!

There can be any number of details data grids. Now, that is actually pretty impressive. Any number, huh? We’ll get
there.

Like the above grid, each Details grid is presented in tabbed format. The more Details added to a journal, the more tabs
we see here.

26 Chapter 5. How was Demo built?

Jam.py Design Tips

5.3.4 Data Grid Header/Footer

Automatically provided is a classic New/Delete/Edit option for any Data Grid. It can exist on the Top/Bottom of some
data Grid, hence I call it Header/Footer. It can also contain other buttons or a menu, which is a code driven, so coding is
needed for non default buttons.

Ok, do not want to go any further, just a minimum to get us going. Adding the Buttons, Multiple Details as Tabs, or
changing the look and feel is not discussed yet.

5.3.5 Any questions?

So now that we’ve covered the first thing we see on the Demo application, any questions?

All of the above is driven by the Builder GUI. We might be saying it’s no big deal, but it actually is a big deal! Because to
code this from the beginning, like with Django, one would need years and years of coding experience to cover all possible
scenarios. Or a team of dedicated developers.

I am ignoring the Reports and Analytics for now. Only concentrating on no-code or low-code. The Reports and Analytics
require some coding experience. Not much, but still needed.

5.4 Ok, how do I start?

If no questions (cough, cough), I think we should first start with building some tables. Since we are doing Invoices, lets
start with this. It is a sort of top-to-bottom approach!

5.4. Ok, how do I start? 27

Jam.py Design Tips

5.4.1 Invoices

For an invoice, we need a Customer, some Product and somewhere to store invoiced data, like a Journal. To be fair,
Journal is just a name. We do not really need to stick to the Jam.py Demo application naming! Rename anything to
whatever floats your boat!

We can rename the Journals caption to anything, since this is just a Caption. However, the Name can be used in the code
somewhere, so it is always advisable to use the“Find”built-in function to search where some Name is used.

On above screenshot we see the“Deleted Flag”and“Record ID”. This is just a bit of built-in functionality. When we
create a new table in the Journals group, these two records will be created automatically. We can think of this as a table
template.

The Master field field seen above is also a feature. In the Demo application Invoices table, it is used to identify which
item belongs to which Invoice.

Note: Master fields are not real fields in the database, they get populated when we select a value in the Lookup field.

Master fields are virtual fields in Jam.py that get populated based on the value selected in the lookup field. They are not

28 Chapter 5. How was Demo built?

Jam.py Design Tips

actual columns in the database table, but rather a way to display related information from another table in the UI. When
a value is selected in the lookup field, the master field is automatically updated with the corresponding value from the
related table. This allows for easy navigation and visualization of related data in the UI.

This is actually very powerful feature inmy books, because it quickly identifies stuff. Which stuff youmight ask? Anything
built as a Lookup fields. By setting the Master Field to Customer, we can easily identify all data related to the Customers

table that we are pulling information from.

I would leave it here for now, but just note that the Master field can also be achieved with code for imported tables.
Usually, imported tables are from other systems like MSSQL or MySQL, and are not created by Jam.py. In this case, we
can add the table as a detail to only one master. With the Master field feature in Jam.py, we can do much more. We will
get to this later.

Only Invoices, Invoices Items, and Tracks are using the“Master field”in Demo application.

The Demo Invoices table:

We see that Invoices table is referencing a lot from the Customers table! This is where we look at the Chinook database,
we see the relation Customers - Invoices!

This means we can create the table but with no Customers one, we can’t really achieve what is needed for Invoices to

5.4. Ok, how do I start? 29

Jam.py Design Tips

function correctly.

With no Customers table our Invoices table would look like this:

It is exactly the same thing, same as above one would think. Not really. It would not display any data because Jam.py
would assume that all of Customers data is coming from one, and only one table, which is Invoices table. It is also true
that all fields would have the Integer Type, which is not quite right. It is presented here just as an example and it is not
the right way of doing it.

However, from the diagram, the Invoices is pulling some data from Customers and“Invoice Items”table. That is the
Holy Grail of any application building. Pulling data from here and there, and showing the result with no code, or low
code, is exactly what Jam.py does. We call that a Lookup fields.

As seen, on the right hand side checked options are“Visible”,“Soft Delete”,“History”and“Edit lock”. Refer
to Item Editor dialog for more info.

Also, worth mentioning is that Invoices do contain a tiny code for calculating“Tax”and“Total”column. It also utilises
Jam.py feature to alert the User with a custom message. It does that on Editing only.

Here we touch the View/Edit option on builder.html. When we click on Journals/Invoices, there is a“View Form”option
on the right hand side.

30 Chapter 5. How was Demo built?

https://jampyapplicationbuilder.com/docs/admin/items/item_editor_dialog

Jam.py Design Tips

Here we control the layout, sorting and summary fields, as well as fields visibility on the Demo data grid. On the Form
tab, we see a number of other options, but most importantly the“View detail”option, with selected“Invoice table”.
We can select as many Details as we like, providing they exist. If no detail is selected, there would be nothing to display.
Somehow counter-intuitive on the first instance, however we are controlling the visibility with this option, not more then
that.

5.4. Ok, how do I start? 31

Jam.py Design Tips

Similar for Edit option. Exclude or select for editing whatever is necessary, as well as details needed for editing. While
on it, we can also control how to present the edit form in the sense of tabs or bands. This is done on“Plus”icon on
the left hand side. I would encourage to play with this options, it is quite subjective what and how something should be
presented.

32 Chapter 5. How was Demo built?

Jam.py Design Tips

5.4.2 Customers

Back to Customers, if we visited Tutorial. Part 1. First project in the Doc’s, I hope it is pretty much clear how to create
a simple CRM. Hence, Demo application has Customers table as well, which is consumed by the Invoices table.

Here is how Customers table looks like:

5.4. Ok, how do I start? 33

https://jampyapplicationbuilder.com/docs/intro/tutorial01/index.html

Jam.py Design Tips

It is a simple table with no lookups to some other tables, like Invoices for example. Because it is derived from the Chinook
database, we can see that Demo is missing the Employees table, so the SupportRepid is not used anywhere. That is fine.
No harm done. We might argue that Customers table can be split in more tables, like Country, State or similar. While on
it, please see Tutorial. Part 2. File and image fields for adding Image field. We did touch base with the View/Edit option
on Invoices, no need for repeating.

Now that we have two tables in place, we can set the Lookup fields in Invoices in a similar fashion as in Tutorial. Part 1.
First project.

We did not touch the third table yet, which is the“Invoice items”. This is the part of Tutorial. Part 3. Details

34 Chapter 5. How was Demo built?

https://jampyapplicationbuilder.com/docs/intro/tutorial02/index.html
https://jampyapplicationbuilder.com/docs/intro/tutorial01/index.html
https://jampyapplicationbuilder.com/docs/intro/tutorial01/index.html
https://jampyapplicationbuilder.com/docs/intro/tutorial03/index.html

Jam.py Design Tips

5.4.3 Invoice items

To automatically add some details to some other table, with no code what so ever, we need to use Jam.py Details feature.

Why would we do that? Well, we could opt for coding. It is available feature and used mostly for Imported tables, which
do not contain additional fields Jam.py is using.

However, Demo application is demonstrating how Jam.py is functioning, so why not using it.

Basically, since the Invoice Table is a detail of the master table Invoices, it has the master_rec_id field that stores a
reference to an invoice. As a master record, we can show an invoice that contains the current item. Clear as mud?

The Details Group differs from other default tables slightly:

See the additional fields? The fields in question are master_rec_id and master_id. This fields do not exist in any legacy
systems. None of the applications out there are using it. However, let’s not be afraid of this feature. As mentioned, we
can and we will achieve the Jam.py functionality with a bit of code for legacy systems without this fields.

In addition, the option“Visible”is unchecked. It makes no sense in setting the Details as visible, since we edit/view
them within the Invoices only. It is possible to set it as visible, though.

5.4. Ok, how do I start? 35

Jam.py Design Tips

Just like before with Invoices table, but not with Customers, the“Invoice Table”is referencing two tables,“Tracks”
and“Customers”.

If below table screenshot was the“blank”Invoice Items table, with no Lookup fields to the above two tables, it would
not show anything. The reason why we using “Customers”table and not the “Invoices”, InvoiceId from Chinook

database diagram, is the presentation. It is more nicely presented with the customer last name on the screen, as compared
to with some meaningless number. In this case it is InvoiceId (integer), as on the diagram, which ultimately identifies the
Customer by the CustomerID. Similar with Tracks, we are using it to do the Lookup on a completely different tables,
namely“Albums”and“Artists”.

36 Chapter 5. How was Demo built?

Jam.py Design Tips

Same mantra, we look at the database diagram. We“dive”deep from“Invoice Items”to“Tracks”to“Albums”
and finally to“Artists”.

We are using the power Jam.py feature - lookups, as much as we can to minimise coding. Just imagine the SQL needed
to“join”the three tables! To provide the exact SQL, here is what Jam.py generates automatically as the last SQL query
when we open Invoices:

SELECT "DEMO_INVOICE_TABLE"."ID", "DEMO_INVOICE_TABLE"."DELETED", "DEMO_INVOICE_TABLE

↪→"."MASTER_ID",

"DEMO_INVOICE_TABLE"."MASTER_REC_ID", "DEMO_INVOICE_TABLE"."TRACK", "DEMO_INVOICE_

↪→TABLE"."QUANTITY",

"DEMO_INVOICE_TABLE"."UNITPRICE", "DEMO_INVOICE_TABLE"."AMOUNT", "DEMO_INVOICE_TABLE".

↪→"TAX",

"DEMO_INVOICE_TABLE"."TOTAL", "DEMO_INVOICE_TABLE"."INVOICE_DATE", "DEMO_INVOICE_TABLE

↪→"."CUSTOMER",

DEMO_TRACKS_43."NAME" AS TRACK_LOOKUP, DEMO_TRACKS_43_ALBUM."TITLE" AS ALBUM_LOOKUP,␣

↪→DEMO_TRACKS_43_ALBUM_ARTIST."NAME"

AS ARTIST_LOOKUP, DEMO_CUSTOMERS_329."LASTNAME" AS CUSTOMER_LOOKUP FROM "DEMO_INVOICE_

↪→TABLE" AS "DEMO_INVOICE_TABLE"

(continues on next page)

5.4. Ok, how do I start? 37

Jam.py Design Tips

(continued from previous page)

OUTER LEFT JOIN "DEMO_TRACKS" AS DEMO_TRACKS_43 ON "DEMO_INVOICE_TABLE"."TRACK" =␣

↪→DEMO_TRACKS_43."ID" OUTER LEFT JOIN

"DEMO_ALBUMS" AS DEMO_TRACKS_43_ALBUM ON DEMO_TRACKS_43."ALBUM" = DEMO_TRACKS_43_

↪→ALBUM."ID" OUTER LEFT JOIN

"DEMO_ARTISTS" AS DEMO_TRACKS_43_ALBUM_ARTIST ON DEMO_TRACKS_43_ALBUM."ARTIST" = DEMO_

↪→TRACKS_43_ALBUM_ARTIST."ID" OUTER

LEFT JOIN "DEMO_CUSTOMERS" AS DEMO_CUSTOMERS_329 ON "DEMO_INVOICE_TABLE"."CUSTOMER" =␣

↪→DEMO_CUSTOMERS_329."ID" WHERE

"DEMO_INVOICE_TABLE"."DELETED"=0 AND "DEMO_INVOICE_TABLE"."MASTER_ID"=16 AND "DEMO_

↪→INVOICE_TABLE"."MASTER_REC_ID"=464

ORDER BY DEMO_TRACKS_43_ALBUM."TITLE", DEMO_TRACKS_43."NAME"

There we go! We can easily copy/paste the above SQL query into some utility to browse the data in demo.sqlite database.
Just imagine coding this type of query for all possible combinations of tables. Btw, this SQL extract is possible by
changing the Jam.py source code.

Now we execute Tutorial. Part 3. Details

5.4.4 How did we go?

So, did we manage to get the Invoices with details up? It is quite common for the first timers to miss the“Details”button
on the right hand side of Invoices in builder.html.

On the CRM example, the Details is a“to-do-list”. If all went ok, we should have a project page similar to Demo.

5.4.5 Click on!

With the expectations and basics covered, we can double click on any Invoices row. If all good, we see one invoice with
the invoice items included.

38 Chapter 5. How was Demo built?

https://groups.google.com/g/jam-py/c/twlRyMYHMwc/m/c5sbpTQJBQAJ
https://jampyapplicationbuilder.com/docs/intro/tutorial03/index.html
https://jampyapplicationbuilder.com/docs/intro/tutorial03/index.html

Jam.py Design Tips

If nothing was touched or changed, this is how it looks like. Job done. All created automatically, no code yet! Except for
“Tax”and“Total”.

See how almost everything related to Customer is greyed out? This is because of the Master field! Only one field on
the Invoices table is not using“Master field”and this is a Customer field. Hence, only that field won’t be greyed out,
because we are using it to define all other fields on the Form. For sure we are not updating the“Invoice Date”from
anywhere, it is defined with a little code. Same with“Tax”,“SubTotal”and“Total”.

5.4.6 Your 1st task!

As mentioned, we can edit anything directly in the data grid! The changes will be picked immediately and saved in the
database.

Your first task is to find the option which enables editing in the data grid.

It looks like this:

5.4. Ok, how do I start? 39

Jam.py Design Tips

And why not reshuffling the Invoices edit form a bit?

To look similar to this:

40 Chapter 5. How was Demo built?

Jam.py Design Tips

Very good, we are getting there!

I am not sure if more info is needed about the data grid and forms layout. Just note that the Menu is created from the
builder.html Groups layout, so whatever is showing here first, it will be shown as first on the Menu.

If we quickly want to change the application starting view to ie Customers, we just change the Groups order.

Maybe we can go now through a code.

5.5 A little code

Before diving in to a code, remember the ACE Code Editor shortcuts!

If one is a beginner with any sort of coding, this might be a bit daunting. However, I can assure you, the developers
out there are using copy/paste just like anyone else. So, with a bit of persistence, one can reuse the code from Demo
application and get impressive results. This is particularly true for Dashboards, which is a flag Jam.py feature. We included
more then 15-20 graphs for some applications, with a minimal change for each. For example, just changing“pie”to
“bar”changes the graph appearance.

The official documentation has a heaps of code applicable to Demo application. Here will try to explain where exactly
the code is used and a bit about why. Again, we touching only the additional code applicable for Demo, the default one
which comes with a blank and empty project is not discussed.

5.5. A little code 41

Jam.py Design Tips

5.5.1 Invoices

In Invoices, it is quite obvious that some calculations are happening“on the fly”. At the moment, Jam.py v5 has no
feature to calculate fields automatically, driven by visual application builder.html. The new major Jam.py version might
include this option. This might be a put off for some users or a“would be”developers and the reasoning is that major
players, like PowerApps, have that. Sure, they also have a bottomless financing, if you follow my drift.

Here is the tiny code for Demo application version 1.5.30. The code can be found on“Client module”, after selecting
Invoices:

function on_field_get_text(field) {

if (field.field_name === 'customer' && field.value) {

return field.owner.firstname.lookup_text + ' ' + field.lookup_text;

}

}

function on_field_get_html(field) {

if (field.field_name === 'total') {

if (field.value > 10) {

return '' + field.display_text + '';

}

}

}

function on_field_changed(field, lookup_item) {

var item = field.owner,

rec;

if (field.field_name === 'taxrate') {

rec = item.invoice_table.rec_no;

item.invoice_table.disable_controls();

try {

item.invoice_table.each(function(t) {

t.edit();

t.calc(t);

t.post();

});

}

finally {

item.invoice_table.rec_no = rec;

item.invoice_table.enable_controls();

}

}

}

function on_detail_changed(item, detail) {

(continues on next page)

42 Chapter 5. How was Demo built?

Jam.py Design Tips

(continued from previous page)

var fields = [

{"total": "total"},

{"tax": "tax"},

{"subtotal": "amount"}

];

item.calc_summary(detail, fields);

}

function on_before_post(item) {

var rec = item.invoice_table.rec_no;

item.invoice_table.disable_controls();

try {

item.invoice_table.each(function(t) {

t.edit();

t.customer.value = item.customer.value;

t.post();

});

}

finally {

item.invoice_table.rec_no = rec;

item.invoice_table.enable_controls();

}

}

As seen, the Client module contains five JavaScript functions. First two functions deal with text formatting. The
on_detail_changed is using Jam.py built in function calc_summary.

Lastly, one of the most important function and the most commonly used is:

on_field_changed()

function on_field_changed(field, lookup_item) { <- 1.

var item = field.owner, <- 2.

rec;

if (field.field_name === 'taxrate') { <- 3.

rec = item.invoice_table.rec_no;

item.invoice_table.disable_controls(); <- 4.

try { <- 5.

item.invoice_table.each(function(t) {

t.edit();

t.calc(t);

t.post();

});

}

(continues on next page)

5.5. A little code 43

https://jampyapplicationbuilder.com/docs/refs/client/item/m_calc_summary.html

Jam.py Design Tips

(continued from previous page)

finally { <- 6.

item.invoice_table.rec_no = rec;

item.invoice_table.enable_controls(); <- 7.

}

} <- 8.

}

Understanding this function is quite important. It provides a mechanism to control what happens when some input on
the application is changed.

Steps:

1. In this case we are looking to“monitor”the“taxrate”field, because it will affect all Items tax after changing it. We
need to change the relevant Lookup fields. Which is a lookup to a different table, right? We are changing“Tax Rate”in
Invoice table, but at the same time expect the changes in“Invoices Items”.

2. We define some“shortcuts”here. See how item is repeating in the code? Hence, a“shortcut”.

Note: When copy/paste the code, it is not obvious that“item”is not there as it should be. So the best is to look at the
code we know that is working. Like Demo/Customers Client Module, etc.

Consider this example:

function on_field_changed(field) {

if (item.field_name === 'pattern_type') {

.

.

That is not going to work. Simply because it is missing“var item = field.owner”.

3. This is where the magic happens. We“test”the field name if is the required one. If not, nothing happens and goes
straight to Step 6, which is“the end”. Because this is typical“if”clause, better use“try”and“finally”in it, steps
4. and 5. respectively.

With“rec =⋯” we define all records needing changing, after the“taxrate”changes. With“⋯disable_controls”
we disable all buttons (control items) temporary, as we do not want something actioned on while working on changing
records.

4. Disable DOM controls temporarily. We are doing this to significantly speed up the displaying of data.

5. Then we“try”to update all records with a function“.each(⋯)”. Which does“edit”,“calc”and finally“post”.
We use“edit”to open every single record for editing, and“post”to post everything back via API. This is the“POST”
part. Without it, the data would not be saved.

Note: The function -“calc”, does the actual calculation on records. The function is in“Journals/Invoices/InvoiceTable”

44 Chapter 5. How was Demo built?

Jam.py Design Tips

Client Module.

6. Enable DOM controls.

7. And“finally”, we show the results back with“item⋯= rec”and enable the buttons, etc. with“⋯enable_controls”
.

8. If the field name was not the one we are after, exit the“if”clause here.

That is it. With above steps, we created the JavaScript calculations.

Note: No calculation will happen with a field valued as null.

It is absolutely needed to check the condition before expecting that the calculation will go through.

5.5.2 Error handling!

As with above null, when doing something, it is always advisable to use best practises:

Note: One of the main obstacles with using“on_field_changed” is a infinite loop happening. For example one field
changing the field we are expected to“monitor”.

The following algorithm can be used to avoid this situation:

let calculating;

function on_field_changed(field, lookup_item) {

if (!calculating) {

calculating = true;

try {

// some calculations

}

finally {

calculating = false;

}

}

}

For more information please visit the mailgroup error thread.

5.5. A little code 45

https://groups.google.com/g/jam-py/c/_HhCO1Rsoy4/m/wqJeeVp1BgAJ

Jam.py Design Tips

5.5.3 So, how was it?

Is the above too much? Or easy to follow and apply in some other scenario?

To expand a bit on“on_field_changed”, please visit Conditional formatting mailgroup thread or search the mailgroup
for the same. There are a number of scenarios where to apply “on_field_changed”, and this is just a touch of the
surface. One possible scenario is changing the password. Again, the best is to search the mailgroup.

5.6 More code

As mentioned, the calc function exists outside the code used in Invoices Journal. Why? Because there might be many
Details in some Journals, and placing them in one single place is not flexible enough. Simply put, an function, for example
on_field_changed, would overwrite the same function if there is a need for two same functions.

5.6.1 Invoices Details

Here is what is in the Journals/Invoices/InvoiceTable, note the on_field_changed function again:

function calc(item) {

item.amount.value = item.round(item.quantity.value * item.unitprice.value, 2);

item.tax.value = item.round(item.amount.value * item.owner.taxrate.value / 100,␣

↪→2);

item.total.value = item.amount.value + item.tax.value;

}

function on_field_changed(field, lookup_item) {

var item = field.owner;

if (field.field_name === 'track' && lookup_item) {

item.unitprice.value = lookup_item.unitprice.value;

}

else if (field.field_name === 'quantity' || field.field_name === 'unitprice') {

calc(item);

}

}

function on_view_form_created(item) {

var btn = item.add_view_button('Select', {type: 'primary', btn_id: 'select-btn'});

btn.click(function() {

item.alert('Select the records to add to the invoice and close the from');

item.select_records('track');

});

}

(continues on next page)

46 Chapter 5. How was Demo built?

https://groups.google.com/g/jam-py/c/qDlZnWfLsrc/m/XXyvOCS1AgAJ

Jam.py Design Tips

(continued from previous page)

function on_after_append(item) {

item.invoice_date.value = new Date();

}

It needs to be stressed that details can“live”with absolutely no code on Details tree within the builder.html! However,
when we attach the detail to some Journal (Tutorial. Part 3. Details), probably some code is needed there. And that is
exactly the above example.

Because the details store Invoices Items, so basically products, the calc code exist here and only here. It is only relevant
to Items, right?

The new functions presented here are:

on_view_form_created()

on_after_append()

It is quite obvious what the function on_view_form_created does. It creates a“Button”and assigns a function to it so
when the button is clicked, it shows the JavaScript message and presents a form to select some products. All of this in
just five lines of code.

Function on_after_append just adds the current date on a form.

We are almost there with the final Demo Invoices code! Hold on!

5.7 Server code

This is where Python programming language kicks in. Everything in Jam.py as the Server code is Python. Just like the
VBA for Access!

5.7.1 Invoices

The last code remaining for Invoices is the Server Module code.

If we click on Journals/Invoices“Server module”as on builder.html, this is the code:

def on_apply(item, delta, params, connection):

tracks = item.task.tracks.copy(handlers=False)

changes = {}

delta.update_deleted()

for d in delta:

for t in d.invoice_table:

if not changes.get(t.track.value):

changes[t.track.value] = 0

if t.rec_inserted():

(continues on next page)

5.7. Server code 47

https://jampyapplicationbuilder.com/docs/intro/tutorial03/index.html

Jam.py Design Tips

(continued from previous page)

changes[t.track.value] += t.quantity.value

elif t.rec_deleted():

changes[t.track.value] -= t.quantity.value

elif t.rec_modified():

changes[t.track.value] += t.quantity.value - t.quantity.old_value

ids = list(changes.keys())

tracks.set_where(id__in=ids)

tracks.open()

for t in tracks:

q = changes.get(t.id.value)

if q:

t.edit()

t.tracks_sold.value += q

t.post()

tracks.apply(connection)

Here is where quite important function is introduced:

on_apply()

There are many on_apply occurrences in the official documentation since it is the same function name for the Client and
Server operations, JavaScript and Python, respectively.

It is fairly small chunk of code, which mainly deals with changes, inserts or deletion of Items. The code is relevant for
Demo application version at the time of writing. It can be used for many scenarios if slightly modified.

Not quite sure how to dive into the above code with the explanations with keeping it simple. The official documentation
might be sufficient. However, why doing it we might ask?

5.7.2 Why Server Code?

Note: To answer the above question, the Server Code is needed because it is happening in the background. It is almost
exactly as the stored procedure, the relational databases are using. It is absolutely possible for an application not
to use the Server Code at all, hence no need for Python. This is the application design choice. If needed, Jam.py can also
use the database stored procedures.

The relational database engines are quite efficient with the stored procedures. But, and there is a but, is the stored
procedure portable to a different database products? Of course not. The good news is, Python is portable. Hence, with
using the Server Code Jam.py can successfully run on any platform.

With some other database engines, or even the Front End Applications like MS Access, for the background operations the
Visual Basic might be used. With MSSQL Server, the database stored procedure can be executed from Access. Either

48 Chapter 5. How was Demo built?

https://jampyapplicationbuilder.com/docs/refs/server/item/on_apply.html

Jam.py Design Tips

way, the code is needed and it would not be portable to a different platform. It is “locked in”for one and only one
database product.

Jam.py completely eliminates the above. There is no“lock in”with any specific database product. The application can
be developed on any supported database, and can be moved to any supported database.

There is also a question of security. It is quite simple to implement the code which controls the permissions on what can
be executed by the user. This is almost the Desktop Application territory!

And there are even more good news! Debugging.

5.7.3 Debugging

To debug the stored procedure within the relational database, is not for faint hearted. Every developer or the DBA would
agree. Of course, the more experienced professionals would protect their turf. Again, it is business after all.

However, for a“would be”developer, Python is way easier to learn and debug. And for the professionals, it is a breeze.

How to debug is completely down to Python experience, and leaving it to the reader to consult official Python resources.

5.7.4 And finally⋯

Below SQL will check for any code in the Application Server Modules (using sqlite3 command line utility):

sqlite3 admin.sqlite "select id, f_name,f_server_module from sys_items where f_

↪→server_module!='' and f_server_module is not null"

Below sql will check for any code in the Client Modules:

sqlite3 admin.sqlite "select id, f_name, f_web_client_module from sys_items where f_

↪→web_client_module!='' and f_web_client_module is not null"

Of course, the Developer would need access to the admin.sqlite database to run the SQL against it. The SQL does not
take into account commented code.

Here is the list where all Server code is on Demo application, hence it can be easily identified within the builder.html:

1|Jam.py Demo

5|Reports

13|Genres

15|Tracks

16|Invoices

19|Print invoice

20|Customer purchases

22|Customer list

25|Mail

5.7. Server code 49

Jam.py Design Tips

Note: Note the ID! That is exactly the same ID as seen on builder.html! The Genres has ID=13, Tracks has ID=15, and
so on. Hence, we know how many are there and exact location for each Server Module used within the application.

The commented out code, meaning not used at all for Demo, is code with ID=1 (Jam.py Demo). The code should be
uncommented when the built in Authentication is turned on.

5.7.5 ⋯the End of Code

Hope you’ve enjoyed this Code part! The intention was to explain some bits and pieces which were exclusively developed
for Demo application. For sure there is more code as seen on the above SQL output! However, half of that number is
related to Reports. And we are not going to Reports just yet.

5.8 index.html

Here we are introducing the basic index.html structure.

5.8.1 Templates

Demo application has the“About”and“Jam.py”on the right hand side of the Menu bar. This is a Code as well.

However, it is a bit different to what was discussed above, since the code is related to the index.html file. Btw, this is true
for everything else. Everything is based on it. It is the root file on any application in Jam.py release 5 or older. In the
newer release of Jam.py, the file template.html is introduced. More about that latter on.

If we open index.html file in builder.html (Task/Project), the below is visible:

<div id="taskmenu" class="navbar">

<div class="navbar-inner">

<ul id="menu" class="nav">

<ul id="menu-right" class="nav pull-right">

<!--<li id="admin">Application builder-->

<li id="about">About

<li id="jam">Jam.py

</div>

</div>

Jam.py calls this html block a Template.

The“About”and“Jam.py”is simply a link, just as“Application builder”is. Which is commented out.

50 Chapter 5. How was Demo built?

https://jampyapplicationbuilder.com/docs/how_to/authentication/how_to_authenticate_from_custom_users_table.html

Jam.py Design Tips

Hence, everything we want to see here is just a matter of adding it as extra lines. It is quite clear that this Template is
related to a “menu”, and it will display on the right hand side. It clearly indicates menu-right! The id= is the most
important one, here we see id admin, about and jam.

However, this itself is not enough for the proper application functioning. Why? Because the Template does not exist on
it’s own. For example, in Django or Flask, the Template might be using a“built in”functionality, like“for loop”
clause. Jam.py does not do that. It does not contain any code for Template in the index.html file.

This must the stressed, in Jam.py, there is no need to“program”the Template. It is a simple html. Ingenious.

5.8.2 Template Code

The Template Code for “About”and “Jam.py”is in demo.js (Project/Task/Client Module). It is the default code
available for any new project:

$("#menu-right #admin a").click(function(e) {

var admin = [location.protocol, '//', location.host, location.pathname, 'builder.

↪→html'].join('');

e.preventDefault();

window.open(admin, '_blank');

});

$("#menu-right #about a").click(function(e) {

e.preventDefault();

task.message(

task.templates.find('.about'),

{title: 'Jam.py framework', margin: 0, text_center: true,

buttons: {"OK": undefined}, center_buttons: true}

);

});

The admin link will just open the new tab in the browser, with the builder.html page. Cool. So this is how we open
any page, ie a “Help”page for the application. Of course, we would need a help.html file. Try it. Create help.html
within the application folder and replace builder.html with help.html! Obviously, the commented code prevents this from
happening. Uncomment it first.

For about link, we also see:

task.templates.find()

The function is used to find the correct Template id. In this case the below“about”block in index.html, since the id=

about, which is the class name“about”:

<div class="about">

<h3>Jam.py</h3>

<h3>Demo application</h3>

with Chinook␣

(continues on next page)

5.8. index.html 51

Jam.py Design Tips

(continued from previous page)

↪→Database

<p>by Andrew Yushev</p>

<p>2015-2017</p>

</div>

That is all to get us going. It should be easy to change the Menu content, and open some pages or a dialogue.

5.8.3 Wrapping up

Congrats! Almost everything is covered regarding the Demo functionality! Hope it was not that difficult.

5.9 Dashboard

Now that we’ve covered the Data Grids functioning, maybe it’s a time to have a look at the Demo Dashboard. First
to understand is the Template in index.html for the Dashboard, and Dashboard only.

5.9.1 Dashboard template

The Template for Demo Dashboard is a simple two columns table:

<div class="dashboard-view">

<div class="row-fluid"> <-- the table -->

<div class="span6"> <-- column #one -->

<canvas id="cutomers-canvas"></canvas> <-- graphics one -->

<div id="customer-table"></div> <-- table under it -->

</div>

<div class="span6"> <-- column two -->

<canvas id="tracks-canvas"></canvas> <-- graphics #two -->

<div id="tracks-table"></div> <-- table under it -->

</div>

</div> <-- end of table-->

</div>

This obviously means one thing: we need a heaps bigger table if we are going to implement many Pie charts or
similar!

Hence, the below Template would create two rows with two columns table:

<div class="dashboard-view">

<div class="row-fluid">

<div class="span6">

(continues on next page)

52 Chapter 5. How was Demo built?

Jam.py Design Tips

(continued from previous page)

<canvas id="assets-canvas"></canvas>

<div id="assets-table"></div>

</div>

<div class="span6">

<canvas id="parts-canvas"></canvas>

<div id="parts-table"></div>

</div>

</div>

<div class="row-fluid">

<div class="span6">

<canvas id="parts_table-canvas"></canvas>

<div id="parts_table-table"></div>

</div>

<div class="span6">

<canvas id="parts_suppliers-canvas"></canvas>

<div id="parts_suppliers-table"></div>

</div>

</div>

</div>

The above example is from here second Demo.

The Demo Template above has an typo: cutomers-canvas should be customers-canvas. We can observe that this is
related to a customer-table. Same with tracks-canvas, it is related to a tracks-table.

With this two pieces of information, we can build the JavaScript code to show the data. We just need to remember that
index.html file must include:

<script src="static/js/Chart.min.js"></script>

The file Chart.min.js can exist elsewhere and not in static/js, however, this is where it normally resides.

5.9.2 Dashboard Menu Item

Before we dive into the JS code, it is visible on Demo that the Dashboard exist as an Item on the Menu, called Analytics.
This is just an Project/Task/Groups Item on builder.html, where Analytics was created as an place holder for Dashboard
virtual table! Now, what is a virtual table we will cover latter on, but just think of it as virtual - it does not exist in the
database.

So, when creating a Dashboard from scratch, just replicate what Demo has, one Analytics (or whatever we need to call
it), Group Item and one Dashboard virtual table within that Item. Simple. Takes 30 seconds to create!

5.9. Dashboard 53

https://jampy.pythonanywhere.com/

Jam.py Design Tips

5.9.3 Dashboard Code

As we know, Jam.py uses ChartJS as the Dashboard engine. However, that does not mean much when working with the
Jam.py. It is really easy, though.

If we look at the Demo builder.html, and click on Analytics/Dashboard/Client Code, the code has approx 100 lines. But
only half of it is actually related to the application!

The rest is copy/paste! Huh, that is assuring. Cough, cough!

First, remember the above Dashboard Template, customers-canvas and tracks-canvas?

To start working on the Dashboard, we need to define this two canvases:

function on_view_form_created(item) {

show_cusomers(item, item.view_form.find('#cutomers-canvas').get(0).getContext('2d

↪→'));

show_tracks(item, item.view_form.find('#tracks-canvas').get(0).getContext('2d'));

}

The exact typo exist here as well! The code tells the Application to look at the index.html for this two canvases, and when
found, the JS function executes the show_cusomers and show_tracks, respectively.

Hence, when building more graphics, we would need more functions. From above second Demo, the functions to show
four graphics are:

function on_view_form_created(item) {

show_assets(item, item.view$('#assets-canvas')[0].getContext('2d')),

show_parts(item, item.view$('#parts-canvas')[0].getContext('2d'));

show_parts_table(item,item.view$('#parts_table-canvas')[0].getContext('2d'));

show_parts_suppliers(item,item.view$('#parts_suppliers-canvas')[0].getContext('2d

↪→'));

}

Each JS function normally pulls data from one table only. However, the ChartJS is quite effective and does Lookup fields

too! So no wonder Jam.py is using this library when it nicely utilises the power of lookups!

function show_cusomers(item, ctx) { <-- step 1

var inv = item.task.invoices.copy({handlers: false}); <-- step 2

inv.open(<-- step 3

{

fields: ['customer', 'total'],

funcs: {total: 'sum'},

group_by: ['customer'],

order_by: ['-total'],

limit: 10

},

(continues on next page)

54 Chapter 5. How was Demo built?

https://jampy.pythonanywhere.com/

Jam.py Design Tips

(continued from previous page)

function() { <-- step 4

var labels = [],

data = [],

colors = [];

inv.each(function(i) { <-- step 5

labels.push(i.customer.display_text);

data.push(i.total.value.toFixed(2));

colors.push(lighten('#006bb3', (i.rec_no - 1) / 10));

});

inv.first(); <-- step 6

draw_chart(item, ctx, labels, data, colors, 'Ten'); <-- step 7

inv.create_table(item.view_form.find('#customer-table'), <-- step 8

{row_count: 10, dblclick_edit: false});

}

);

return inv; <-- step 9

}

Steps:

1. This is where we define the function name. It must be exact name as in the above function: on_view_form_created
Yes, the same typo in the name! We try to logically name the functions as the name of the database tables.

2. The magic happens here. We define the var inv because the table is invoices table! Very important, almost all can
be used with copy/paste if we just rename a few instances of inv and invoices. Taking into account that the table
fields will possibly change as well! Do not care for handlers: false just yet.

3. Remember, the var inv is just a“shortcut”(I call it like that, because I like it). Hence, inv.open will open the
table invoices for access. By opening, we are actually fetching a few fields (Chinook database fields) :

• customer and total

We also using a“built in”ChartJS Function, funcs:

• to summarise total with function‘sum’

Can we read the rest what is happening? Order and limit? I hope so. It is quite simple, right?

4. This code is copy/paste, it is needed for ChartJS.

5. Remember to adjust inv, customer and total for your needs. This is also where Lookup fields kicks in, the cus-
tomer.display_text will display the Customer Name and not the CustomerId as an Integer, which is visible on the
Invoices table. Also worth mentioning is total.value.toFixed(2), which is obviously a value of Total, rounded to
two decimals. Since we dealing with 1/10 of data, some calculations is needed with (i.rec_no - 1) / 10).

6. Start from first. Remember inv!

7. Draw graphics with‘Ten most active customers’Label!

5.9. Dashboard 55

Jam.py Design Tips

8. Create table with some data under the graphics within the customer-table Template! Remember to adjust for the
rest of Templates!

9. And finally pass back the Invoices data.

So there you go! With one single block of code we can create indefinite number of graphics utilising Lookup fields within
the ChartJS!

5.9.4 Cosmetic code

Now that we know how to create a graphics for one table, the rest is a copy/paste! Functions draw_chart and lighten is
just cosmetic. Play with it.

Note: Changing a code in function draw_chart from a‘pie’to‘bar’, will change the graphics!

5.9.5 End of Dashs

Once we get a handle of it, creating a Dashboards is a breeze! It is just a matter of adjusting the names of tables and
variables. Plus, how much data we are presenting, one tenth of it, or one third, etcetera. Of course, there is a bit more
about it, but we do not want the information overload! Hope that this is just enough to get going!

Note: To Be Continued⋯

56 Chapter 5. How was Demo built?

CHAPTER

SIX

MS ACCESS MIGRATION

Here we touch base on Access migration to Jam.py.

6.1 MS Access migration

Congratulations on the decision to migrateMS Access to the Web!

After all, it is moving to the modern JavaScript with Bootstrap and jQuery technology Front End! Which is powered by
Python.

Jam.py is not exclusively developed for Access migration though. Just like Django (Python) or CodeIgniter (PHP), is
not. Both mentioned products are not specialised for the databases oriented applications, even though one could migrate
Access to any of those.

However, Jam.py is specialised. Just like Access is.

Before considering migrating Access (or any other proprietary software), to the Web with the help of Jam.py, please
review some answers below. Which might help with understanding what to expect from migration to Jam.py.

6.2 Top Migration Questions

The MS Access might be a bread and butter for many developers out there. Particularly in some specific industries like
the Law practices or similar. And fair enough. It is the right tool for the job.

However, the risk is that in some years to come, the developers will retire. I know, I’m one of them. Hence, where
will the business find people to maintain their expensive application? Maybe they already hired the MSSQL database
administrator, since the Access developers told them to do so. The DBA’s might be around in years to come, but the
Access developers? Or better, THE Access itself?

Hence, the faster we move away from proprietary database AND Front End application, the better. Simply because the
technology will be around way after the MS Access is gone. This is business after all, let’s put aside the emotions. The
HTML is here to stay. Who remembers the Netscape any more? Or Mosaic?

57

Jam.py Design Tips

6.2.1 1. Complacency

Success breeds complacency. Complacency breeds failure. Only the paranoid survive. Andy Grove

About being paranoid, many MS Access Front End applications are not encrypted! This means the IP (In-
tellectual Property), is not protected. Even worse! The VBA code might contain email passwords or similar.
For example: https://wellsr.com/vba/2020/excel/vba-send-email-with-gmail/

Is your application cyber safety compliant?

The application might be compliant for some business, however does it run on theWeb? AppleMac? Tablet?
That is exactly what we are also addressing with the migration. The Future with the IP and Cyber Safety.

6.2.2 2. VBA?

Does your application rely on heaps of VBA for Business Rules (BR)?

The VBA can’t be migrated to the Web. The question is what is it used for? 5000 lines of VBA code might
be a dinosaur code! Is it possible to use Python with 200 lines of code? How about 10 lines?

In addition, what might not be recognised is the speed. The VBA just does not compare with Python. The
Developers will argue that this is due to the quality of code. Not quite true. The code is just as impor-
tant as garbage collection, or utilising memory, etc. And this is where Python shines. It replaces massive
technological debt with a few lines of code.

For example, the BRmight be a way the application authenticates users (ie. a table with username, password,
role). Jam.py can reuse the Access tables used for users, so no issues with that. When the database is
migrated, the users authentication table is there and we can use exactly twelve lines of Python code, as seen
on Demo, to authenticate users with the roles.

Also worth mentioning VBA to Python –10 Simple Python vs VBA Examples. The article touches on
some differences and interesting points from a seasoned VBA developer. However, for building the Jam.py
application, JavaScript is used as a Front End. Hence, the real difference is between JS and VBA. For
example, showing the MessageBox or conditional formatting and functions.

On that note, the above article touches on VBA code for MessageBox:

Sub MessageBox()

'Information box

MsgBox "Hello", vbInformation, "Information"

'Yes / No question

If MsgBox("Do you like this tutorial?", vbYesNo, "Question") =␣

↪→vbYes Then

Debug.Print "They like it!"

Else

Debug.Print "They don't like it!"

(continues on next page)

58 Chapter 6. MS Access migration

https://wellsr.com/vba/2020/excel/vba-send-email-with-gmail/
https://analystcave.com/vba-to-python-10-examples-python-vs-vba/

Jam.py Design Tips

(continued from previous page)

End If

End Sub

In JavaScript, Jam.py does that in a similar way:

var btn = item.add_view_button('Set invoice paid', {type: 'primary',␣

↪→btn_id: 'paid-btn'});

btn.click(function() {

item.question('Was the invoice paid?', function () {

item.edit();

item.paid.value = true;

item.post();

item.apply(true);

});

});

The code above actually does more then displaying the MsgBox! It will update all selected records in one
go. Imagine writing the VBA code for the same task.

The MessageBox with JS in Jam.py is something like this:

item.alert('Successfully sent the mail');

The button in Jam.py is something like this:

var btn = item.add_view_button('Set invoice paid', {type: 'primary',␣

↪→btn_id: 'paid-btn'});

btn.click(function() {

-- do something here --

});

6.2.3 3. Excel?

Does your application depends on Excel or some other Office products?

This might be a show stopper, simply because the organisation will not let go of Excel. This might be
particularly true within some Financial institution. The good news is Python can read/write Excel document
formats. For sure Access has better interoperability with those products. It is the Desktop application after
all. However, some operations within Access using Excel, might take a long time, sucking up the resources.
Not so with Python and Excel. It is super easy to integrate Excel with Jam.py application using DataTables.

Good resource for using Excel with Python.

6.2. Top Migration Questions 59

https://www.datatables.net
https://www.pyxll.com/docs/userguide/vba.html

Jam.py Design Tips

6.2.4 4. Queries

Most of the“applications”consist of a single hard-coded query or a single linked table.

The above is a quote from Front-End for MS Access migration? It is an old thread with all points still valid.
With Jam.py, one does not write queries. It is absolutely possible to do so, if needed.

It is a no-code, low-code or more-code RAD framework after all. And that can open the whole new world
for a group of developers! Because each of them can work simultaneously on some other part of applica-
tion, being the Forms or the Server procedures, everything is instantly accessible to everyone with the right
privileges.

Hence, everything is simplified. The Jam.py framework will build complex queries just like Access does,
with a few clicks of the mouse. Contrary to the Access, this query, in fact the complete application, will
work on any supported database. Develop the application and deploy it to preferred database. Simple. No
need to rewrite the queries.

6.2.5 5. Primary Keys

Be assured, there are a number of applications out there with no Primary Keys in Access.

The Primary Key (PK), is a must with all relational databases. With no PK, Jam.py cannot reference the
Foreign Keys (FK). Not only relevant to Jam.py, Django does not do that either. Since both are sharing
similar ORM. So no matter how we migrate Access to the Web, with which technology, the PK simply must
exist. This is even true with Access web applications and web databases.

6.2.6 6. Deployment

If possible, have the front-ends copied locally on each workstation, for performance reasons.

Again, the same source Front-End for MS Access migration? See how nothing really changed from year
2008?

Some Access Developers would argue that RDP or Citrix or even VPN is the way to deploy the Front End
application to the Web. All this technology was around in 2008. Nothing new.

What is new is the Cloud.

Back to topic. Regarding the Access packaging, some people are using one distributable file, sometimes
protected with the encryption. Jam.py can do exactly the same. Even more, one can use SQLCipher to
protect the IP. Combining both within a portable application, which can run from, for exampleWindows x64
with no installation at all, is a powerful deployment and secure method. With such approach, the application
database might be off-site or even embedded and encrypted with SQLCipher. This method can provide safe
and secure access even from a portable drive in an off-line environment, for example with no Internet access
at all. Only the local area network is needed for more then one user.

60 Chapter 6. MS Access migration

https://stackoverflow.com/questions/221995/front-end-for-ms-access-migration
https://stackoverflow.com/questions/221995/front-end-for-ms-access-migration

Jam.py Design Tips

Regarding Web servers deployment, Jam.py application can be deployed in a few minutes on almost any
popular Web server. Which can serve thousands of users simultaneously. Jam.py flagship application is
supporting 2000 remote locations, each with 10-20 users. There is no need for installation of anything and
costs almost nothing.

6.2.7 7. Compile Error

The code in this project must be updated for use on 64-bit systems⋯

Self explanatory error.

6.2.8 8. Cannot open the database

Cannot open a database created with a previous version of your application.

Not so self explanatory error.

6.2.9 Conclusion

Hope the above sparked some interest. Even though there are probably more reasons why one should or should not try to
migrate Access application to the Web. With or without using the migration tool as below is providing.

6.2. Top Migration Questions 61

Jam.py Design Tips

6.3 Where from here?

To successfully migrate MS Access to Jam.py, the assumption is that at least some knowledge exist with using the Jam.py
Application Builder interface. Or, if feeling confident, one can start creating everything from scratch, and then load the
data into the tables manually. We think that the below procedure is way more faster method. And, it does not cost
anything.

If agreed, please visit:

https://jampyapplicationbuilder.com/conv/

After the Access file is uploaded and converted with no errors:

• link to the Application Builder will be emailed, which is using the sqlite3 data converted from Access instantly
available on the Web! It is super easy and takes no time! If not interested at all in building the FrontEnd
Application, please click on Export to download the DB as zip file which contains the sqlite3 file. The converted
sqlite3 database has a long name exactly the same as in provided the link. This is to increase safety and security
for all downloads.

Note: If interested in instantly showing data on the Web, meaning using Jam.py, please continue with the below:

The Application Builder from the provided link will set the Database to“DB manual mode”. This means your new
database is safe from changing the structure, like incidentally deleting the table or similar. If you would like to continue
migrating Access to Web with the help of Jam.py framework, import all tables into the “Test Import”Group (click
on Test Import/Import button), taking care of all needed DB columns correction or missing info. All fields must have a
datatype if not already recognized. The“DB field name”should not be touched, the“Caption”is normally MS Access
field caption, and the“Name”must be valid JavaScript naming standard, in short, no spaces, special characters, etc. To
help out with the process, here are some videos:

Video overview - Jam.py VS MS Access

Video tutorial - How to publish MS Access Application to Web using Jam.py and SQLite3

Video tutorial - Simple CRM built automatically with Selenium IDE in 2.45minutes, demonstrates the Tutorial. Part 1.
First project

New style Demo - Jam.py Demo Application

Personal Account Ledger - Migrated from MS Access template

Northwind Traders - Northwind Traders Migrated from MS Access template

After Importing some tables, just replace builder.html with index.html from the link to access your Application. Some-
times the index.html page will not show anything due to Load Balancer issues. Please try after some time. Or start over.
One can even set the App password or create users within the Builder. The default App/Builder username/password
is admin/111, change it on Project/Users and set Project/Parameters/Safe Mode to restrict access, etc. One can set all
lookups to different tables as usual. It should be a fully functional App with all the bells and whistles!

62 Chapter 6. MS Access migration

https://jampyapplicationbuilder.com/conv/
https://www.w3schools.com/js/js_conventions.asp
https://www.youtube.com/watch?v=ZpgEJh80QAs
https://www.youtube.com/embed/eaVjUEYG3Ac
https://www.youtube.com/embed/Sv_IllxQ_RY
https://jampyapplicationbuilder.com/docs/intro/tutorial01/index.html
https://jampyapplicationbuilder.com/docs/intro/tutorial01/index.html
https://jampyapp.pythonanywhere.com/
https://msaccess.pythonanywhere.com/
https://northwind.pythonanywhere.com/
https://jampyapplicationbuilder.com/docs/intro/tutorial01/lookup_list.html

Jam.py Design Tips

It is important to note that once the Access file is converted and all tables Imported through the builder.html, it is not
needed to use this service at all. Immediately use the Export [CTRL+E] option and download the Export file. Then,
install the Python Jam.py framework locally or on the server, create the New application, Import the same downloaded
file, and point the Application to sqlite database as per creating the New application. That is all.

6.3.1 Notes/Issues

This tool is for the database tables only, it does not convert MS Access file with no tables in it. Hence, no need to upload
a Front End application, which probably connects to SQL Server or some other database(s). Output will be empty, or
it will contain only a few tables. The ODBC linked tables are supported.

The process is expecting that the Primary Key exists on all tables. The simple INTEGER is not a Primary Key.
The Log File will indicate this. Please address and fix this issue before attempting the conversion. Use only oneNumeric

Field as the Primary Key, ie. AutoNumber field.

MS Access might have a special character, space, slash/backslash, dash (-),quote(‘), etc for the table field, as well
as table name. The conversion will try to replace those, however, we would advise to fix the issues in MS Access, before
attempting the conversion.

The conversion will fail if there are non-ODBC linked tables in MS Access. Please remove any linked tables before
attempting the conversion. The ODBC linked tables are supported.

The conversion will fail if Access is using utf-16-li, no need to try again. No log or link will be produced and we suggest
fixing Access.

There might be an #Error in the Access field, please fix it if conversion fails, and attempt again. The best is to inspect
the Log file, sometimes clearly showing the error. If the log file is empty, something went wrong. No need to try again
if Access wasn’t fixed.

Please do not upload confidential, private or password protected/encrypted database. If conversion to SQLite3 is
needed for such data, the tool can be provided on demand. Password protected database conversion might fail, no need
to try again.

6.3.2 Terms and Conditions

“This site and its components are offered for informational purposes only; this site shall not be responsible or liable
for the accuracy, usefulness or availability of any information transmitted or made available via the site, and shall not be
responsible or liable for any error or omissions in that information.”

6.3. Where from here? 63

https://jampyapplicationbuilder.com/docs/intro/install.html
https://jampyapplicationbuilder.com/docs/intro/new_project.html
https://jampyapplicationbuilder.com/docs/admin/project/metadata_file.html
https://jampyapplicationbuilder.com/contact.html

Jam.py Design Tips

6.4 Now what?

First of all, thanks for trying the migration!

Now that the database is converted to SQLite3, let’s see what we can do with it. The migration utility just speeds up the
process of getting the data on the net. It does not build the Front End Application, even though we could easily automate
this step.

But then, the Front End look and feel is subjective. If replicating the exact MS Access form as close as possible, it really
takes no time to do it manually.

Before doing that, the best is to have a look at the MS Access Relational Diagram. It should clearly show the relations
between the tables, as seen on the Chinook database.

For Access application with no Relation Diagram within it, it is still possible to look at the queries design. Each query
would probably mean some sort of relation between two or more tables. Hence, in Jam.py, it is possible to create the
Lookup fields to other tables just like MS Access does.

6.4.1 Tables

In order to use the automatic displaying of data (automatically with CRUD), the table name is used as table Caption!
That is, if the Caption was not changed during the table Import.

Hence, if the database table name is django_ledger_accountmodel, then the JavaScript variable Name is
also django_ledger_accountmodel! And more importantly, the visible table Caption on the Application is
django_ledger_accountmodel as well.

So maybe better to set the table Caption to Account, Bank, etc. See how nicely everything looks like on the
screenshot below?

This is also true for any table column during the table Import.

Finally, the application might look like this:

64 Chapter 6. MS Access migration

https://jampyapplicationbuilder.com/tips/howDemo/build.html#chinook

Jam.py Design Tips

The MS Access linked tables (by ODBC at.al), are now possible to import. There are some constraints though, not all
datatypes can be recognised due to the ODBC connection. Of course, the MS Access linked tables are just the issue when
using the conversion tool provided above. One can always connect to MSSQL server directly from Jam.py Application
Builder and Import the tables.

6.4.2 Using UTF8

The above is all well and true for the English language. Or the Latin alphabet. However, using UTF8 in MS Access
is supported, but not supported in JavaScript naming standard. Unfortunately, this is directly impacting Jam.py tables
Import usability.

Automatic translation to comply with JavaScript naming standard

Because of that reason, when using our site for the migration, all non-Latin alphabet is translated to JavaScript naming
standard automatically. The below notes are valid for official Jam.py installation downloaded from the Internet, which
does not support the automatic translation yet.

Consider this scenario:

6.4. Now what? 65

https://www.w3schools.com/js/js_conventions.asp

Jam.py Design Tips

The Table name is 00_COSTES ALFONSO. And the list of the tables continues with 01_, 02_, 03_, etc. Unfortunately,
it is also using this as a table name: 00_PRECIOS ICM > GENOCOL_IMAT.

Which just proves that MS Access will accept anything we throw on it. Is this a good practice? It is for the Access though.
However, any modern framework will reject such a practise. Including Jam.py.

Importing the above table will produce the below:

Such a table Import might fail. It cannot be imported, and the problems need to be fixed first.

66 Chapter 6. MS Access migration

Jam.py Design Tips

Note: The first issue is the table name starting with 00_, 01_, 02_⋯, due to a JavaScript naming standard. The solution
is to rename the tables to remove 00_, 01_, 02_⋯ in Access.

The migration utility will replace the starting numbers if they exist.

Or, we might use Python for this task:

import sqlite3

connection = sqlite3.connect("database.sqlite3")

cursor = connection.cursor()

tableQuery = "select * from sqlite_master where type = 'table' and name != 'Order'␣

↪→and name != 'sqlite_sequence'"

cursor.execute(tableQuery)

tableList = cursor.fetchall()

for table in tableList:

t_orig = table[1]

t_fix = t_orig[3:]

renameTable = 'ALTER TABLE "'+t_orig+"\" RENAME TO "+t_fix+""

cursor.execute(renameTable)

connection.close()

Secondly, the table field used with UTF8: definición_de_la_patología. Note how the original MS Access field used is
Definición de la patología with spaces? The conversion replaced spaces with the underscore automatically. It does that
for the table name as well. However, read on.

The Import as such is going to fail, due to JavaScript naming standard for the column Name.

The solution is to rename definición_de_la_patología to definicion_de_la_patologia, or similar valid Name. The DB
Field name can stay as is: Definición_de_la_patología.

Finally, the Italian language field from MS Access might look like this:

6.4. Now what? 67

https://www.w3schools.com/js/js_conventions.asp
https://www.w3schools.com/js/js_conventions.asp

Jam.py Design Tips

As seen, Jam.py will happily use the UTF8 for the Caption. As well as the SQLite3 for database table Name and the DB
field name. JavaScript naming standard is now fixed for the Name *.

In short, for any non-English language, or non-Latin alphabet, like the below Hebrew language, the Name * must be
changed to Latin alphabet, and the rest can stay the same:

68 Chapter 6. MS Access migration

Jam.py Design Tips

Please note the Primary key field as well. Because the Name is in Hebrew language, the Primary Key field is also in
Hebrew and Import will fail.

For that reason, we developed the way to translate all necessary items automatically, with no manual intervention needed.
The above example with Hebrew language would automatically appear as per below. Due to translation inconsistencies,
it is always advisable to double check the translated string. In this example, the“doubt”word probably is not correct,
hence leaving to the readers to decide.

6.4. Now what? 69

Jam.py Design Tips

If happy with the way the table looks like and DECIMAL(15,4) is changed to CURRENCY data type, we can proceed
with the Import. It is possible to immediately check the result on the Internet, by removing builder.html from the browser
link.

For this particular example with Hebrew language, the Application needs the support for right-to-left language.

This can be achieved by finding below code in index.html file (on Project/Task):

<html lang="en">

and replacing it with:

<html lang="he" dir="rtl">

70 Chapter 6. MS Access migration

Jam.py Design Tips

6.4.3 Field Captions

To expand on UTF8 and field Captions, there is a utility for MS Access to dump all table fields Captions (MS Access
optional Descriptions), to the CVS file. Why would we do that? Well, almost all third-party database conversion utilities
do not write the Captions to the new database. Hence, the Access information might be lost. This is particularly true for a
non English Access Front End Application, where the developers might utilise Captions from the Language table. Hence,
the table name would always be the same, only the Captions would dynamically change.

In the above Italian language scenario, the Access Caption might be Definición de la patología. The MS Access Devel-
oper decided not to use Captions, as they are optional. Hence, the table Import will use the table name for the Caption,
which is fine for this example as there are no many non-Latin names.

However, please consider the Access applicationwith the field captions! This is what we are trying to resolve, so we reuse
all the hard work already done in Access.

For example, if the MS Access table DEMO_TRACKS has a field NAME1 and the Caption for the field Track title

1, the TEST.CSV file might look like below and the Python code to update it:

DEMO_TRACKS, NAME1, Track title 1
DEMO_TRACKS, NAME2, Track title 2
DEMO_TRACKS, NAME3, Track title 3

import sqlite3

import numpy as np

captions = np.loadtxt('test.csv', dtype=str, delimiter=',')

print(captions)

this will output:

#captions = [

['DEMO_TRACKS', 'NAME1', 'Track title 1']

['DEMO_TRACKS', 'NAME2', 'Track title 2']

.

.

]

con = sqlite3.connect('admin.sqlite')

cursor = con.cursor()

for table_name, field_name, caption in captions:

cursor.execute("SELECT ID FROM SYS_ITEMS WHERE DELETED=0 AND F_TABLE_NAME='%s'" %␣

↪→table_name)

res = cursor.fetchone()

if res:

item_id = res[0]

cursor.execute("SELECT ID FROM SYS_FIELDS WHERE DELETED=0 AND OWNER_REC_ID=%s␣

↪→AND F_DB_FIELD_NAME='%s'" % (item_id, field_name))

res = cursor.fetchone()

(continues on next page)

6.4. Now what? 71

Jam.py Design Tips

(continued from previous page)

if res:

field_id = res[0]

cursor.execute("UPDATE SYS_FIELDS SET F_NAME='%s' WHERE ID=%s" % (caption,

↪→ field_id))

con.commit()

con.close()

Note: To prepare the CSV file, use Excel as“Save As”-“CSV UTF”- very important!

Also very important to run dos2unix command on the file in Linux, since it will otherwise do this at the output:

[[’ufeffDEMO_TRACKS, ..]

Note: The good news is, our conversion utility now supports Access optional Caption. They are written directly into the
SQLite3 database as comments. All popular SQLite3 utilities, like“DB Browser for SQLite”or“SQLiteman”, can
read the database schema with the comments.

The below is an example for Arabic language where MS Access utilises the optional Description, which Jam.py might
use for Captions. Each Caption starts with - - , which is a comment in SQLite3:

CREATE TABLE `Location` -- منطقه (`ID` INTEGER PRIMARY KEY AUTOINCREMENT -- ردیف

,

`location` VARCHAR(255) DEFAULT '' -- منطقه

,

`Edare` VARCHAR(255) DEFAULT '' -- اداره

,

`Address` VARCHAR(255) DEFAULT '' -- آدرس

)

We are working towards enabling Jam.py to read the table and field comments and interpret them as Captions while
importing the table. As seen, the JavaScript naming standard does not apply for the above table, since the table is using
Latin language for everything except Captions.

72 Chapter 6. MS Access migration

https://www.w3schools.com/js/js_conventions.asp

Jam.py Design Tips

6.4.4 Reserved Words

In JavaScript and Python, there are a number of reserved words that can not be used. However, MS Access might happily
use those. Simply add some character to the Name *, and leave the database Table Name as is. For example:

Caption * Privileges Active Order
Name * privileges_f active_f order_f
Table Name privileges active order

6.4.5 Deleted Flag

In order to use a full Jam.py functionality with so called Deleted Flag, which basically prevents data to be permanently
deleted, we need to add DELETED field to the tables. However, this is not required for Jam.py or the Application to
function. It is an nice feature to have, specially if the Foreign Key enforcing is enabled. Meaning, some data cannot be
deleted if some other data exist elsewhere as a reference. Deleted Flag totally eliminates the hustle of enforcing Foreign
Keys deletion.

We could easily automate adding the DELETED field during the conversion, as it is not required for all tables probably.
This is what we can do:

• we can add a field to any table with a Python code, as per below. The db.sqlite3 is the database converted from
Access.

Note: “Order”word is a reserved word for Python, so we exclude it. There are other reserved words, please consult
the Python or Jam.py documentation.

import sqlite3

connection = sqlite3.connect("db.sqlite3")

cursor = connection.cursor()

tableQuery = "select * from sqlite_master where type = 'table' and name != 'Order' "

cursor.execute(tableQuery)

tableList = cursor.fetchall()

for table in tableList:

renameTable = "ALTER TABLE %s"%(table[1]) + " ADD COLUMN DELETED integer"

print(renameTable)

cursor.execute(renameTable)

connection.close()

Now, we should be able to select the Deleted Flag as deleted field during the table Import.

6.4. Now what? 73

Jam.py Design Tips

6.4.6 Primary Keys

As noted in the Top Migration Questions, the Primary Key is a must. However, a lot of MS Access tables use the Indexed
key only, and not an AutoNumber. If the key is an Integer, we might use it as an unique identifier in Jam.py.

Note: This only means that we need to manually update the identifier for a new record. More about that later.

For the tables with no indexed Integer, for example the plain indexed text values, the best is to add the Integer identifier.

Consider the scenario where table column grupo is referenced in table material, with MS Access functionality:

CREATE TABLE `agru`

(`grupo` VARCHAR(255) DEFAULT '')

In MS Access, the field grupo is indexed (no duplicates), however SQLite3 interprets this as above after the migration.

The solution is to add ID as identifier and populate the record with rowid, which is built-in SQLite3 function:

alter table agru ADD COLUMN ID integer;

update agru set id = rowid+1;

Now we can create agru_id in the table material and populate records with the ID value from table agru:

update material set agru_id = (select id from agru where material.agru = agru.grupo)

As mentioned, because it is impossible to add a Primary Key with AutoIncrement to an existing table, the database has
no functionality to increase the ID on-the-fly. Hence, we do that manually.

To do that, we just add below code to table grupo on Client Module:

function on_before_post(item) {

if (item.is_new()) {

let copy = item.copy();

copy.open();

if (copy.rec_count ===0) {

item.id.value = 1;

} else {

item.id.value = copy.rec_count + 1;

}

}

}

The preferred method is to always use a Primary Key with AutoIncrement within the database. However, this would mean
redesigning the application or starting from scratch.

74 Chapter 6. MS Access migration

Jam.py Design Tips

6.4.7 Foreign Keys

Similar scenario, after the data is migrated, we can create a Foreign Keys within the Builder. Again, the Jam.py utilises
lookups for looking up for data.

However, if the Access tables did not use a Foreign Keys, this will be an issue. Consider this scenario:

All columns in this Access table do not utilise a Foreign Key. This is clearly visible when we click on the field. If the
Foreign Key is used, the Access Lookup would open. In addition, if we utilise MS Access Database Tools/Analyse Table

option, the Wizard would suggest to split the table in a number of new ones. Hence, the migration to Web of such table
will not produce the expected result, since the values are hard coded. The solution is to split the table with MS Access
Wizard first, then use the migration tool.

6.4.8 Indexes

As stated, the migration does not import indexes. This is due to a number of constraints. The good news is once the data
is converted, the indexes can be created within the Builder. The good practise is to index all lookups on some table.

Why is this important? Because doing it within the Builder, all indexes are kept and can be recreated on any supported
database engine. If the indexes exist within the database only, the Builder would not know about it and they would be lost
when moving Application to the preferred database.

6.4.9 Users table

If already using some MS Access database table for users authentication, the only thing missing is the Role lookup. It
is quite possible that the role is hard-coded in Access, and this is what we are trying to avoid. Use lookups as much as
possible.

The process is described in here: How to authenticate from custom users table.

Obviously, it is the best practise to use password hash for storing the passwords. This simply means adding a column with
a Password hash text to the Users or similar table.

Note: To Be Continued⋯

6.4. Now what? 75

https://jampyapplicationbuilder.com/docs/how_to/authentication/how_to_authenticate_from_custom_users_table.html

Jam.py Design Tips

6.5 Some migrated examples

To make it easier for a would be Jam.py Users/Developers, we started to build the showcase repository with the Appli-
cations directly migrated from MS Access. It is important to understand that one can start completely from scratch and
build the application without any conversion or migration tools. We just think it’s easier to use the tools on our disposal.

Please find the list of some applications available as Templates in Access and migrated to Jam.py. All source code is
available for download on Export tab.

For some mentioned applications, the Export file is available. Download the Export, install the Jam.py framework
locally or on the server, create the New Project, Import the same downloaded file, and point the Application to sqlite
database as per creating the New Project.

6.5.1 Personal Account Ledger

The application lives here:

https://msaccess.pythonanywhere.com

Note: If the Application Export is downloaded from the above link, ie. to try the application by yourself, the first thing
needed is to install Python libraries.

Providing the Jam.py is already installed and a new application created, please execute below for Windows before Im-
porting the downloaded file:

py -m pip install password_strength

Or Linux:

pip install password_strength

Overview

The Access Template Personal Account Ledger has a“feature”which enables typing the negative value for currency.
Then the actual Expense is automatically converted to Income, since the negative currency becomes a positive value! Our
migrated project does not allow for this due to validation.

The complete application was developed in a few hours` time. Below is the approximate process:

• The template was uploaded to https://jampyapplicationbuilder.com/conv/ to give us all tables and data needed for
the project.

76 Chapter 6. MS Access migration

https://msaccess.pythonanywhere.com
https://jampyapplicationbuilder.com/conv/

Jam.py Design Tips

• All tables were imported into the Jam.py Application Builder from the provided link after the upload. Since the
Access Categories Form has a Drop-down list with the Income and Expense, the Lookup List was created with the
same.

Lookup List

• By looking at the Access Database Tools Relationships, the Account Transactions table Category field was linked
by the Lookup Item to Categories Description field. The Income or Expense field was created in the Transaction

table and linked to the Categories same field. Also, the actual_amount field was added, since in Access this is a
query field.

6.5. Some migrated examples 77

Jam.py Design Tips

• The Categories Income or Expense was linked to Lookup Value List.

78 Chapter 6. MS Access migration

Jam.py Design Tips

A little code

• The first code was added to restrict adding a negative currency with the MessageBox displaying the Alert.

function on_field_validate(field) {

if (field.field_name === 'transaction_amount' && field.value < 1) {

return 'The amount cant be negative!';

}

}

• Then, we observed how is Access displaying the Expense/Income formatting in red and green color on the Data
Grid. The decision has been made to display the actual Expense/Income text in a coloured way as well as the value.

• The code was added to accommodate for the above:

function on_field_get_html(field) {

let item = field.owner;

if (field.field_name === 'category') {

let color = 'green';

if (item.income_or_expense.display_text === 'Expense') {

color = 'red';

}

return '' + field.display_text + '/' +␣

↪→field.owner.income_or_expense.display_text + '';

}

if (field.field_name === 'actual_amount' || field.field_name === 'category') {

let color = 'green';

if (item.income_or_expense.display_text === 'Expense') {

color = 'red';

}

return '' + field.display_text + '

↪→';

}

}

• Because Access is triggering the displaying of Actual Amount relative to Expense option in red color, or Income
as green colour, the code was added to trigger the similar behaviour:

function on_field_changed(field, lookup_item) {

var item = field.owner;

if (field.field_name === 'transaction_amount' || field.field_name === 'category')

↪→{

calculate(item);

}

}

6.5. Some migrated examples 79

Jam.py Design Tips

• The JS function is needed to actually do the displaying of positive to negative values and vice versa:

function calculate(item) {

if (item.income_or_expense.value) {

item.actual_amount.value = item.transaction_amount.value;

if (item.income_or_expense.display_text === 'Expense') {

item.actual_amount.value = -item.actual_amount.value;

}

}

else {

item.actual_amount.value = 0;

}

}

• Some formatting was added to make the Entry Title in bold. The below function was added at the end of
on_field_get_html function from above:

if (field.field_name==='entry_title') {

return '' + field.display_text + '';

}

• Then, the Dashboard/Reports was added. Some tlc is still needed for those. The Dashboard was covered in“How
was Demo built?”topic

Note:

• The above is all from the actual application Front End point of view. It looks pretty similar to Access, correct? At
this moment it is absolutely possible to turn on the“Safe Mode”, which is the Authentication.

• All of the above was added to Account Transactions Client module. No more code is needed for Access ba-
sic Front End look and feel. The additional code for Authentication was copy/paste from the https://jampyapp.
pythonanywhere.com/ project. Please observe the code and needed tables within the Builder/Authentication tab.
Also, the index.html file was modified and added simple-line-icons support with the Task/project.css. Same
copy/paste from the mentioned project.

• The Clone button was developed latter to emulate the support for highlighted row copy/paste.

• The Delete button was disabled with theMessageBox displaying the Alert, since the deletion is disabled for Publicly
accessible application. This is controlled in Task/Account Transaction/Client module, please search for deleted,
since deletion is actioned on CTRL+DEL as well.

• After two weeks running and some feedback from the Users, the Account Transaction/Filter was added. Also,
some formatting was developed, particularly for displaying red and green Actual Amount on the Form. This is not
the Data Grid formatting, which was added from the beginning. Hence, consider the above positive to negative

function. The function was missing the CSS needed for the Form. The new function is below:

80 Chapter 6. MS Access migration

https://jampyapp.pythonanywhere.com/
https://jampyapp.pythonanywhere.com/

Jam.py Design Tips

function calculate(item) {

if (item.income_or_expense.value) {

item.actual_amount.value = item.transaction_amount.value;

if (item.income_or_expense.display_text === 'Expense') {

item.actual_amount.value = -item.actual_amount.value;

item.edit_form.find('input.actual_amount').css('color', 'red');

}

else {

item.edit_form.find('input.actual_amount').css('color', 'green');

}

}

else {

item.actual_amount.value = 0;

}

}

• More formatting was added to resize the fields. Here, we introduced a new Jam.py function for changing the CSS
when the Edit/New Form is active. Which is as well changing the CSS for the field, but this time on the Edit/New
Form:

on_edit_form_shown()

function on_edit_form_shown(item) {

if (item.income_or_expense.value) {

//item.actual_amount.value = item.transaction_amount.value;

if (item.actual_amount.value < 1) {

item.edit_form.find('input.actual_amount').css('color', 'red');

//item.actual_amount.value = -item.actual_amount.value;

}

else {

item.edit_form.find('input.actual_amount').css('color', 'green');

}

}

item.edit_form.find('input.entry_number').parent().width('40%');

item.edit_form.find('input.transaction_amount').parent().width('40%');

item.edit_form.find('input.category').parent().width('60%');

item.edit_form.find('input.categories').parent().width('60%');

item.edit_form.find('input.income_or_expense').width('60%');

}

• History/Edit Lock was added. This is a no code operation done on Project/Parameters.

• The Report was missing the Income/Expense Parameter. Added. The Reports design and code might be covered

6.5. Some migrated examples 81

Jam.py Design Tips

latter on.

• The Filters was added for Account Transaction table. Because of the“combined”Category with the“/”sign,
some tweaking was needed. Here is the code added to the Account Transactions table, and the code to add three
buttons. The buttons“Clone”,“Filter by type”and“Clear filters”, respectively:

function on_view_form_created(item) {

if (!item.lookup_field) {

var clone_btn = item.add_view_button('Clone', {image: 'icon-magic-wand'});

clone_btn.click(function() { clone_record(item) });

}

//here is setting for filter by type of transaction (income or expense)

let filter_type_btn = item.add_view_button('Filter by type', {type: 'primary',␣

↪→image: 'icon-filter'});

filter_type_btn.click(function() {

filter_by_type(item);

});

let clear_filters_btn = item.add_view_button('Clear filters', {type: 'danger',␣

↪→image: 'icon-remove'});

clear_filters_btn.click(function() {

item.clear_filters();

item.refresh_page();

});

}

function filter_by_type(item) {

let copy = task.categories.copy({handlers: false});

copy.open({fields: ['income_or_expense'], open_empty: true});

copy.edit_options.title = 'Filter by type of transaction';

copy.edit_options.history_button = false;

copy.on_edit_form_created = function(c) {

c.edit_form.find('#ok-btn')

.text('Select type')

.off('click.task')

.on('click', function() {

try {

c.post();

let categories_by_type = task.categories.copy({handlers: false}),

categories_list = [];

categories_by_type.set_where({income_or_expense: c.income_or_

↪→expense.value});

(continues on next page)

82 Chapter 6. MS Access migration

Jam.py Design Tips

(continued from previous page)

categories_by_type.open({fields: ['id']});

categories_by_type.each(function(s){

categories_list.push(s.id.value);

});

item.filters.category.value = categories_list;

item.refresh_page();

c.cancel_edit();

}

finally {

c.edit();

}

});

};

copy.on_edit_form_keyup= function(c, e) {

if (e.keyCode === 13 && e.ctrlKey) {

e.preventDefault();

return true;

}

};

copy.append_record();

}

• More summary was added for Account Transaction table. This is a no code operation done on View Form.

Validation

This is the JS code for the transaction amount validation. We also added on the table account_transactions, field
transaction_amount, on the the Interface Help: Value should be less then 10000.

function on_field_validate(field) {

if (field.field_name === 'transaction_amount' && field.value < 1) {

return 'The amount cant be negative!';

}

if (field.field_name === 'transaction_amount' && field.value > 10000) {

return 'The value is be less then 10000!';

}

}

In June 2023, added date validation to above code, and the Order by Entry Date as DESC:

if (field.field_name === 'entry_date' && field.value > Date.now()) {

(continues on next page)

6.5. Some migrated examples 83

Jam.py Design Tips

(continued from previous page)

return 'The date can not be in the future!';

}

In Jan 2024, added Master/Detail for Categories:

Master/Detail

• For Master/Detail View only, there is no need to do anything special other than to add a simple code to display the
Detail for a Master table. Please see the Northwind Traders Master/Detail View example.

In February 2024, added Read Only on Editing for Categories table, Income or Expense field. Also added formatting.

function on_edit_form_created(item) {

if (item.is_new()) {

item.income_or_expense.read_only = false;

} else {

item.income_or_expense.read_only = true;

}

}

API

In November 2023, added API endpoint on Task/Server:

def on_ext_request(task, request, params):

reqs = request.split('/')

if reqs[2] == 'expenses':

result = task.account_transactions.expenses(task, params)

return result

The table account_transactions has the Server Module, which will return Total for the Actual Amount:

from jam.common import cur_to_str

def expenses(item, params):

inv = item.task.account_transactions.copy()

inv.open()

total = 0

for i in inv:

total += i.actual_amount.value

total = cur_to_str(total)

return(total)

84 Chapter 6. MS Access migration

Jam.py Design Tips

The API can be accessed with:

curl -k https://msaccess.pythonanywhere.com/ext/expenses -d "[]" -H "Content-Type:␣

↪→application/json"

Now that we have API in place, it is trivial to use it in any other Jam.py application within the Server Module:

try:

For Python 3.0 and later

from urllib.request import urlopen

except ImportError:

Fall back to Python 2's urllib2

from urllib2 import urlopen

import json

import time

url = 'https://msaccess.pythonanywhere.com/ext'

def send(url, request, params):

a = urlopen(url + '/' + request, data=str.encode(json.dumps(params)))

r = json.loads(a.read().decode())

return r['result']['data']

result = send(url, 'expenses', [])

print(result)

For example, on NorthwindTraders, we created a table api_call, with the field Value. The value of this field is
populated by the Server Code within the same table. The code is executed by the button Fetch from API.

index.html

• Added the Export tab to download the latest source code. The Export feature is available by default on the Ap-
plication Builder. The Builder is not accessible publicly due to the security reasons. Here is the code added to
index.html file below“about”and Account Transaction table“function on_page_loaded(task)”:

<li id="about">About

<li id="export">Export

$("#menu-right #export a").click(function(e) {

var url = [location.protocol, '//', location.host, location.pathname].

↪→join('');

url += 'static/internal/AccountTransactions.zip';

window.open(encodeURI(url));

});

6.5. Some migrated examples 85

Jam.py Design Tips

• Maybe the last feature needed is the CVS (spreadsheet) export/import. This step is fully documented in the official
documentation.

Note: To Be Continued when/if more features were added⋯

6.5.2 Northwind Traders

The application lives here:

https://northwind.pythonanywhere.com

Note: If the Application Export is downloaded from the above link, ie. to try the application by yourself, the first thing
needed is to install Python libraries.

Providing the Jam.py is already installed and a new application created, please execute below for Windows before Im-
porting the downloaded file:

py -m pip install rfm pandas matplotlib numpy password_strength faker faker_food

Or Linux:

pip install rfm pandas matplotlib numpy password_strength faker faker_food

Overview

The Northwind template has some VBA attached to it. It is a fairly simple code from the migration point of view. Below
is the approximate process:

• The template was uploaded to https://jampyapplicationbuilder.com/conv/ to give us all tables and data needed for
the project.

• All tables were imported into the Jam.py Application Builder from the provided link after the upload. Since there
are a few tables with no Primary Key, this are the candidates for the Lookup List or tables:

Employee_Privileges

Inventory_Transaction_Types

Order_Details_Status

Orders_Status

Orders_Tax_Status

Purchase_Order_Status

86 Chapter 6. MS Access migration

https://northwind.pythonanywhere.com
https://jampyapplicationbuilder.com/conv/

Jam.py Design Tips

• For this exercise, we decided to add the Primary Key for the above tables, instead of making the Lookup Lists. The
only Lookup List created in the beginning of migration was for Purchase orders and Orders tables, Payment Method

field. Which in Access has hard coded values as Cash, Check and Credit Card information (in the sense of exporting
the data into a csv):

Payment Method

The Payment Method is the VARCHAR Type in MS Access. Hence, to be able to use a Lookup List, it was changed to
INTEGER after the Import, and pointed to a created Lookup List.

Note: Which opens a question: how to migrate the hard coded text to a Lookup List or even a table? A bit latter about
that.

Virtual Table

• The biggest challenge was implementing the Inventory List MS Access SQL query as a Virtual Table, since the
query is quite large:

SELECT Products.ID AS [Product ID], Products.[Product Name], Products.[Product Code],␣

↪→Nz([Quantity Purchased],0) AS [Qty Purchased], Nz([Quantity Sold],0) AS [Qty Sold],␣

↪→Nz([Quantity On Hold],0) AS [Qty On Hold], [Qty Purchased]-[Qty Sold] AS [Qty On␣

↪→Hand], [Qty Purchased]-[Qty Sold]-[Qty On Hold] AS [Qty Available], Nz([Quantity On␣

↪→Order],0) AS [Qty On Order], Nz([Quantity On Back Order],0) AS [Qty On Back Order],␣

↪→Products.[Reorder Level], Products.[Target Level], [Target Level]-[Current Level]␣

↪→AS [Qty Below Target Level], [Qty Available]+[Qty On Order]-[Qty On Back Order] AS␣

↪→[Current Level], IIf([Qty Below Target Level]>0,IIf([Qty Below Target Level]

↪→<[Minimum ReOrder Quantity],[Minimum Reorder Quantity],[Qty Below Target Level]),0)␣

↪→AS [Qty To Reorder]

FROM ((((Products LEFT JOIN [Inventory Sold] ON Products.ID = [Inventory Sold].

↪→[Product ID]) LEFT JOIN [Inventory Purchased] ON Products.ID = [Inventory␣

↪→Purchased].[Product ID]) LEFT JOIN [Inventory On Hold] ON Products.ID = [Inventory␣

↪→On Hold].[Product ID]) LEFT JOIN [Inventory On Order] ON Products.ID = [Inventory␣

↪→On Order].[Product ID]) LEFT JOIN [Products On Back Order] ON Products.ID =␣

↪→[Products On Back Order].[Product ID];

SELECT [Inventory Transactions].[Product ID], Sum([Inventory Transactions].Quantity)␣

↪→AS [Quantity Sold]

FROM [Inventory Transactions]

WHERE ((([Inventory Transactions].[Transaction Type])=2))

GROUP BY [Inventory Transactions].[Product ID];

(continues on next page)

6.5. Some migrated examples 87

Jam.py Design Tips

(continued from previous page)

SELECT [Inventory Transactions].[Product ID], Sum([Inventory Transactions].Quantity)␣

↪→AS [Quantity Purchased]

FROM [Inventory Transactions]

WHERE ((([Inventory Transactions].[Transaction Type])=1))

GROUP BY [Inventory Transactions].[Product ID];

SELECT [Purchase Order Details].[Product ID] AS [Product ID], Sum([Purchase Order␣

↪→Details].Quantity) AS [Quantity On Order]

FROM [Purchase Order Details]

WHERE ((([Purchase Order Details].[Posted To Inventory])=False))

GROUP BY [Purchase Order Details].[Product ID];

SELECT [Inventory Transactions].[Product ID], Sum([Inventory Transactions].Quantity)␣

↪→AS [Quantity On Hold]

FROM [Inventory Transactions]

WHERE ((([Inventory Transactions].[Transaction Type])=3))

GROUP BY [Inventory Transactions].[Product ID];

SELECT [Order Details].[Product ID] AS [Product ID], Sum([Order Details].Quantity) AS␣

↪→[Quantity On Back Order]

FROM [Order Details]

WHERE ((([Order Details].[Status ID])=4))

GROUP BY [Order Details].[Product ID];

Note: The above SQL will work only in MS Access. Of course, developing a completely new SQL is possible for any
database provider. Jam can use any SQL within the Server Module, however we will demonstrate a pure Jam way of
doing it.

Here is the JS and Python code, respectively, replacing the need for SQL. The button Purchase was added just like it
exists on MS Access.

The important JS function is:

on_after_open()

As this JS function is taking the result of get_rows Server Module function, it is placed in on_after_open. This
is important to understand, because in formal Jam.py Documentation it is sparsely mentioned. Most of the time, the
on_after_open is used with Master/Detail views. We will touch base more about this function letter on, since it is
extremely important to understand how to use it properly.

There is a topic How to link two tables in the Docs, which I would also encourage to visit.

function on_view_form_created(item) {

(continues on next page)

88 Chapter 6. MS Access migration

https://jampyapplicationbuilder.com/docs/how_to/how_to_link_two_tables.html

Jam.py Design Tips

(continued from previous page)

item.paginate = false;

item.table_options.new = false;

if (!item.lookup_field) {

var email_btn = item.add_view_button('Purchase', {image: 'icon-pencil'});

email_btn.click(function() { purchase() });

}

item.view_form.find("#edit-btn").hide();

item.view_form.find("#delete-btn").hide();

item.view_form.find("#new-btn").hide();

}

function on_after_open(item) {

item.server('get_records', function(records) {

records.forEach(function(rec) {

item.append();

item.product_name.value = rec.product_name;

item.target_level.value = rec.target_level;

item.quantity_on_hold.value = rec.quantity_on_hold;

item.quantity_on_order.value = rec.quantity_on_order;

item.quantity_on_hand.value = rec.quantity_on_hand;

item.quantity_purchased.value = rec.quantity_purchased;

item.quantity_sold.value = rec.quantity_sold;

item.post();

});

});

}

function on_edit_form_created(item) {

var title = 'Purchase ';

item.edit_options.title = title;

item.edit_form.find('#ok-btn')

.text('Purchase')

.off('click.task')

.on('click', function() {

purchase(item);

});

}

function on_field_get_html(field) {

let item = field.owner;

if (field.field_name === 'quantity_on_hand') {

let color = 'green';

if (item.quantity_on_hand.display_text < 30) {

color = 'red';

}

return '' + field.display_text + '
(continues on next page)

6.5. Some migrated examples 89

Jam.py Design Tips

(continued from previous page)

↪→';

}

}

Next is the Server Module code:

The Python code needs a lot of explanation for a would be Python developer. In short, we are looping through three SQL
statements, and not six as in MS Access. All of this is to populate the list res and to return the information back to
JavaScript function. Each SQL statement can be recognised by set_where function:

set_where()

def get_records(item):

res, inventory = [], product = [], ''

product = item.task.products.copy()

#product.set_where(id=41) # here we can specify␣

↪→just one item for testing

product.open(fields=['id', 'product_name', 'target_level'],

group_by=['id'], order_by=['id'])

for p in product:

allocated_inventory = 0

target_level = 0

product_id = product.id.value

target_level += product.target_level.value

print(product_id)

order_details = item.task.order_details.copy()

order_details.set_fields('product_id', 'status_id', 'quantity')

#order_details.set_where(product_id=product_id, status_id=4); # here we can␣

↪→specify just one item for testing

order_details.set_where(product_id=product_id);

order_details.open(fields=['product_id', 'quantity', 'status_id'],

funcs={'quantity': 'sum'},

group_by=['product_id'], order_by=['product_id'])

for i in order_details:

quantity = 0;

transaction_type = 0

quantity_sold = 0

quantity_purchased = 0

quantity_on_hold = 0

(continues on next page)

90 Chapter 6. MS Access migration

Jam.py Design Tips

(continued from previous page)

quantity_on_hand = 0

quantity_on_order = 0

quantity_on_back_order = 0

#print()

inv_transactions = item.task.inventory_transactions.copy()

inv_transactions.set_fields('product_id', 'transaction_type', 'quantity')

inv_transactions.set_where(product_id=product_id, transaction_type__in=[1,

↪→2,3])

inv_transactions.open(fields=['product_id', 'transaction_type', 'quantity

↪→'],

funcs={'quantity': 'sum'},

group_by=['transaction_type'], order_by=['product_id'])

for i in inv_transactions:

if inv_transactions.transaction_type.value == 1:

quantity_purchased += inv_transactions.quantity.value

if inv_transactions.transaction_type.value == 2:

quantity_sold += inv_transactions.quantity.value

if inv_transactions.transaction_type.value == 3:

quantity_on_hold += inv_transactions.quantity.value

quantity_on_hand = quantity_purchased - quantity_sold

purchase_order_details = item.task.purchase_order_details.copy()

purchase_order_details.set_fields('product_id', 'posted_to_inventory',

↪→ 'quantity')

purchase_order_details.set_where(product_id=product_id, posted_to_

↪→inventory=0)

purchase_order_details.open(fields=['product_id', 'quantity'],

funcs={'id': 'count'},

group_by=['product_id'], order_by=['product_id'])

for i in purchase_order_details:

quantity_on_order = purchase_order_details.quantity.value

res.append(

{

'product_name': i.product_id.display_text,

'target_level': target_level,

'quantity_on_hold': quantity_on_hold,

'quantity_on_hand': quantity_on_hand,

'quantity_purchased': quantity_purchased,

'quantity_sold': quantity_sold,

'quantity_on_order': quantity_on_order
(continues on next page)

6.5. Some migrated examples 91

Jam.py Design Tips

(continued from previous page)

}

)

print(res)

return res

Note: What was achieved with the above Python code is portability. It will execute against any database provider.
However, the performance was not great. Hence, it was decided to develop the SQL instead of the above code.

• The set_where function deserves the separate topic though. For now, it is similar to specifying WHERE clause in
SQL.

The SQL developed is much faster than the above code and runs on all supported databases as well:

SELECT

p1.ID AS ID,

p1.Product_Name AS Name,

COALESCE(

(SELECT SUM(od.quantity)

FROM order_details od

WHERE p1.ID = od.product_id AND od.status_id = 4),

0) AS quantity_on_back_order,

COALESCE(

(SELECT SUM(it1.quantity)

FROM inventory_transactions it1

WHERE p1.ID = it1.product_id AND it1.transaction_type = 1),

0) AS quantity_purchased,

COALESCE(

(SELECT SUM(it1.quantity)

FROM inventory_transactions it1

WHERE p1.ID = it1.product_id AND it1.transaction_type = 2),

0) AS quantity_sold,

COALESCE(

(SELECT SUM(it1.quantity)

FROM inventory_transactions it1

WHERE p1.ID = it1.product_id AND it1.transaction_type = 3),

0) AS quantity_on_hold,

COALESCE(

(SELECT SUM(po1.quantity)

FROM purchase_order_details po1

WHERE p1.ID = po1.product_id AND po1.posted_to_inventory = 0),

0) AS quantity_on_order,

(continues on next page)

92 Chapter 6. MS Access migration

Jam.py Design Tips

(continued from previous page)

p1.target_level AS target_level

FROM products p1

GROUP BY p1.ID, p1.Product_Name, p1.target_level ORDER BY p1.ID

As seen, this was the iteration process from a quite large Access SQL, to a much smaller SQL.

Hence, we replace the Server Module code from the above with a new one containing the above SQL:

def get_records(item):

res = []

rows = []

err = ''

sql = """SELECT

p1.ID AS ID,

p1.Product_Name AS Name,

COALESCE(

(SELECT SUM(od.quantity)

FROM order_details od

WHERE p1.ID = od.product_id AND od.status_id = 4),

0) AS quantity_on_back_order,

COALESCE(

(SELECT SUM(it1.quantity)

FROM inventory_transactions it1

WHERE p1.ID = it1.product_id AND it1.transaction_type = 1),

0) AS quantity_purchased,

COALESCE(

(SELECT SUM(it1.quantity)

FROM inventory_transactions it1

WHERE p1.ID = it1.product_id AND it1.transaction_type = 2),

0) AS quantity_sold,

COALESCE(

(SELECT SUM(it1.quantity)

FROM inventory_transactions it1

WHERE p1.ID = it1.product_id AND it1.transaction_type = 3),

0) AS quantity_on_hold,

COALESCE(

(SELECT SUM(po1.quantity)

FROM purchase_order_details po1

WHERE p1.ID = po1.product_id AND po1.posted_to_inventory = 0),

0) AS quantity_on_order,

p1.target_level AS target_level

FROM products p1

GROUP BY p1.ID, p1.Product_Name, p1.target_level ORDER BY p1.ID"""

(continues on next page)

6.5. Some migrated examples 93

Jam.py Design Tips

(continued from previous page)

rows = item.task.execute_select(sql)

for r in rows:

quantity_on_hand = 0

if r[3] and r[4]:

quantity_on_hand = r[3] - r[4]

else:

quantity_on_hand = 0

res.append(

{

'product_id': r[0],

'product_name': r[1],

'quantity_on_back_order': r[2],

'quantity_purchased': r[3],

'quantity_on_hand': int(quantity_on_hand),

#'quantity_on_hand': str(quantity_on_hand),

'quantity_sold': r[4],

'quantity_on_hold': r[5],

'quantity_on_order': r[6],

'target_level': r[7]

}

)

return res

This is it. We now have a fully functional replacement for MS Access SQL. The effort in writing the Python code and the
SQL was pretty much the same, except SQL is much faster.

Note: Or is it?

Slow Virtual Table?

The SQL is fast. However, the on_after_open, or simply put, displaying the data is not. This is because for every
single record added, deleted, or modified, the controls (DOM elements that display the data), are data aware! Which
means checked and appropriately updated for every-single-row. And that is adding a significant delay.

So what do we do? We“disable”the controls temporary, while we’re“filling”the table. We“enable”the controls
after finished.

We do that with:

disable_controls()

94 Chapter 6. MS Access migration

Jam.py Design Tips

and:

enable_controls()

In the official Demo, the same principle is used when Tax field is modified to recalculate all Items tax on Invoice.

The final on_after_open looks like this:

function on_after_open(item) {

item.alert('Working!');

item.server('get_records', function(records) {

item.disable_controls(); // <-- disable DOM controls

try { // <-- try is a bast practise␣

↪→with JS

records.forEach(function(rec) {

item.append();

item.id.value = rec.product_id;

item.product_name.value = rec.product_name;

item.target_level.value = rec.target_level;

item.quantity_on_hold.value = rec.quantity_on_hold;

item.quantity_on_order.value = rec.quantity_on_order;

item.quantity_on_back_order.value = rec.quantity_on_back_order;

item.quantity_on_hand.value = rec.quantity_on_hand;

item.quantity_purchased.value = rec.quantity_purchased;

item.quantity_sold.value = rec.quantity_sold;

item.post();

});

item.first();

}

finally {

item.enable_controls(); // <-- enable DOM controls

}

});

}

This concludes the Virtual Table used for the Inventory List. We should be able to build a Dashboard as seen on the MS
Access template Startup:

- Inventory to Reorder

- Active Orders

6.5. Some migrated examples 95

Jam.py Design Tips

Using a DB Views

It is absolutely possible to use the DB Views instead of Virtual Tables. The smaller SQL would need to be modified
for quantity_on_hand calculation. However, because the SQL is executing on the server side, we did not see any
benefits with using the SQL view for this example.

Master/Details Edit

• In order to implement Master/Details functionality, the PO Detail and Order Detail Group Item was created, and
the related tables were imported into this Item Group. This enables the functionality to add Detail to any Master
table for viewing and editing.

Master/Details View

• For Master/Details View only, with no need for editing, there is no need to do anything special other than to add a
code to display the Details for a Master table.

Below is the code which will display for each Supplier the relevant Purchase Order as Details:

function on_view_form_created(item) {

if (!item.lookup_field) {

item.table_options.height -= 200;

item.purchase_orders = task.purchase_orders.copy();

item.purchase_orders.paginate = false;

item.purchase_orders.create_table(item.view_form.find('.view-detail'), {

height: 200,

summary_fields: ['submitted_date', 'purchase_order_id'],

});

}

}

var scroll_timeout;

function on_after_scroll(item) {

if (!item.lookup_field && item.view_form.length) {

clearTimeout(scroll_timeout);

scroll_timeout = setTimeout(

function() {

if (item.rec_count) {

item.purchase_orders.set_where({supplier_id: item.id.value});

item.purchase_orders.set_order_by(['-submitted_date']);

item.purchase_orders.open(true);

}

(continues on next page)

96 Chapter 6. MS Access migration

Jam.py Design Tips

(continued from previous page)

else {

item.purchase_orders.close();

}

},

100

);

}

}

Here we showing the difference with code used for ie Suppliers and Customers. It is the similar functionality to display
Orders as Details for each Customer:

Note: As seen, almost the same code is used for all Master/Details Views for Products, Employees and Shippers. It is
really simple to add an Detail table to a Master table when knowing the Primary Key.

Lookup Lists

There are many Drop down lists we could move to a Lookup List, for example for Order Details table Status ID field has:

None

Allocated

Invoiced

Shipped

On Order

No Stock

Or, as already mentioned, Purchase orders and Orders table Payment method field:

6.5. Some migrated examples 97

Jam.py Design Tips

Payment Method

However, this usually means splitting the table in two tables, Orders and Payment_method for the Lookups. Or adding
a Lookup List Payment Method and pointing payment_method to it. Which changes TEXT to INT in the Builder, and
stores INT in the database.

In legacy applications, ie. Imported tables from live system, first option is not possible due to table changes. However,
second option is not possible either, because it will store the INT in a table!

The solution is to store the TEXT in tables, as this is acceptable for Imported tables:

function on_field_changed(field, lookup_item) {

let item = field.owner;

if (field.field_name === 'payment_type') {

item.payment_type.value = field.display_text;

}

}

function on_edit_form_created(item) {

if (item.payment_type.value === 'Credit Card') {

item.payment_type.value = "Credit Card";

}

else if (item.payment_type.value === 'Cash') {

item.payment_type.value = "Cash";

}

else if (item.payment_type.value === 'Check') {

item.payment_type.value = "Check";

}

}

We still need a Lookup List ie. “Payment Type”with the values, but the stored value is TEXT, and not INT.

Analytics

This is where Python and JavaScript shines and the chapter almost needs a separate article, due to Python and JavaScript
libraries introduction. To name a few, the application is using Python libraries pandas, matplotlib, numpy, RFM and
JavaScript is using PivotJS and ChartJS.

98 Chapter 6. MS Access migration

https://pandas.pydata.org/
https://matplotlib.org/
https://numpy.org/
https://pypi.org/project/rfm
https://pivottable.js.org/
https://www.chartjs.org/

Jam.py Design Tips

Bulk update, insert or delete

The Orders table has a Data Pump option which will insert a number of records, and update the relevant rows in the
database. In addition, the Purchase Orders table has the same as well as Products table.

Note: To Be Continued⋯

6.5.3 Inventory transactions

The application lives here:

https://assetinventory.pythonanywhere.com

This is interesting template due to a number of reports. There is no VBA at all. However, there is a logic within the
reports to reorder the Inventory based on Reorder Level, Current Stock, and Target Stock Level.

The complete application was developed in a few hours` time. Below is the approximate process:

• The template was uploaded to https://jampyapplicationbuilder.com/conv/ to give us all tables and data needed for
the project.

• All tables were imported into the Jam.py Application Builder from the provided link after the upload.

• The Lookup Lists are within the forms, namely:

Category

Location

TransactionType

• Because how the Access application works, it might be a good decision to convert the Lookup Lists into tables.
That way we might utilise the Jam.py reports and Dashboard features with no additional code needed. The problem
with any Lookup Lists is the table relationship, which can not be built with the SQL, and must be addressed with
code. This is how Personal Account Ledger was built.

• A code from previous examples was applied in the same or similar manner.

Note: To Be Continued when/if more features were added⋯

6.5. Some migrated examples 99

https://assetinventory.pythonanywhere.com
https://jampyapplicationbuilder.com/conv/

Jam.py Design Tips

100 Chapter 6. MS Access migration

CHAPTER

SEVEN

ACKNOWLEDGEMENTS

Here we acknowledge people who influenced Jam.py development or made a contribution themselves.

Especially to:

• Andrew Yushev, Ph.D, author of Jam.py.

• Maxwell Morais, developer and contributor, who created fascinating applications (ERP POC, POS, etc) with Jam.
py and shared his work, and supported me when having issues with the CSS.

• Fabio Lenzarini, developer and contributor, who created amultitude of changes regarding database views, languages
translations with google translator engine, to name a few. Also shared ERP POC application.

• Alistair Bates, developer and contributor, who helped a number of people over the years and shared his knowledge.

• Marko Pandžić, developer who helped with MS Access to SQLite conversion.

• Danijel Kaurin, developer and contributor, who also helped a number of people over the years and shared his
knowledge.

7.1 About the author

Dean Dražen Babić, BSc, is Jam.py enthusiast, developer and promoter. Dean was a frequent public speaker at the
Stirling Toastmasters Club as CC (ex VPE, ex VPPR), and currently residing in WA.

7.1.1 Copyright

This document has been placed in the public domain.

Apex® is a registered trademark of Oracle and/or its affiliates.

Python® and the Python Logo are trademarks of the Python Software Foundation.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Microsoft® and Windows ® are registered trademarks of Microsoft Corporation in the United States and/or other coun-
tries.

101

Jam.py Design Tips

102 Chapter 7. Acknowledgements

INDEX

D
disable_controls() (built-in function), 94

E
enable_controls() (built-in function), 95

O
on_after_append() (built-in function), 47
on_after_open() (built-in function), 88
on_apply() (built-in function), 48
on_edit_form_shown() (built-in function), 81
on_field_changed() (built-in function), 43
on_view_form_created() (built-in function), 47

P
Python Enhancement Proposals

PEP 3333, 7

S
set_where() (built-in function), 90

T
task.templates.find() (task.templates method),

51

103

	Jam.py Application Design Tips
	Introduction
	How is the documentation organised

	Development Checklist
	Development Checklist
	Built in Code Editor
	Python version
	Using Python Virtual Environments
	Using the Source Control
	Unit Testing
	Continuous Integration (CI)
	Generating Documentation
	Limited introduction to the tool
	Debugging
	Profiling
	Containers

	Choosing the Web Server
	Apache Web Server and mod_wsgi
	IIS Web Server
	CPanel

	Choosing the Database
	Database triggers
	Database views
	Database indexes
	Database sequences

	admin.sqlite Database

	Application Design
	Getting Started
	Top 5 Questions
	1. What is Jam.py?
	2. Why using Jam.py?
	3. Why not to use Jam.py?
	4. Does it scale?
	5. What can I use it for?

	Terminology
	Catalogs (Catalogues)
	Journals
	Details
	Reports
	Virtual Tables
	Need more Groups?
	Wrapping up

	Journal/Detail (or Master/Child) scenario
	Forms, Buttons and other user interaction items
	Bulk updates, inserts or delete
	Authentication Decision
	Built in Authentication
	Non built in Authentication
	External Authentication
	LDAP (Active Directory) Authentication
	SAML or SSO Authentication
	OAuth2, OpenID or SiteMinder (CA) Authentication
	MFA or Two Factor Authentication

	User Registration Form
	Forgotten Password Method
	Using Python libraries
	Generated Images

	“How-to” guides
	How to install Jam.py on Windows
	Install Python
	About pip
	Setting up a virtual environment
	Install Jam.py
	Common pitfalls

	How was Demo built?
	Demo project
	Demo database
	What to expect?
	DropDown Menu(s)
	Data Grid(s)
	More Data Grid(s)
	Data Grid Header/Footer
	Any questions?

	Ok, how do I start?
	Invoices
	Customers
	Invoice items
	How did we go?
	Click on!
	Your 1st task!

	A little code
	Invoices
	Error handling!
	So, how was it?

	More code
	Invoices Details

	Server code
	Invoices
	Why Server Code?
	Debugging
	And finally…
	…the End of Code

	index.html
	Templates
	Template Code
	Wrapping up

	Dashboard
	Dashboard template
	Dashboard Menu Item
	Dashboard Code
	Cosmetic code
	End of Dashs

	MS Access migration
	MS Access migration
	Top Migration Questions
	1. Complacency
	2. VBA?
	3. Excel?
	4. Queries
	5. Primary Keys
	6. Deployment
	7. Compile Error
	8. Cannot open the database
	Conclusion

	Where from here?
	Notes/Issues
	Terms and Conditions

	Now what?
	Tables
	Using UTF8
	Field Captions
	Reserved Words
	Deleted Flag
	Primary Keys
	Foreign Keys
	Indexes
	Users table

	Some migrated examples
	Personal Account Ledger
	Overview
	Lookup List
	A little code
	Validation
	Master/Detail
	API
	index.html

	Northwind Traders
	Overview
	Virtual Table
	Slow Virtual Table?
	Using a DB Views
	Master/Details Edit
	Master/Details View
	Lookup Lists
	Analytics
	Bulk update, insert or delete

	Inventory transactions

	Acknowledgements
	About the author
	Copyright

	Index

